ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 17, 2022
Accepted April 2, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effects of cobalt oxide catalyst on pyrolysis of polyester fiber

1Department of Energy Systems Research, Ajou University, Suwon 16499, Korea 2Department of Materials Science and Engineering, Ajou University, Suwon 16499, Korea 3Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Korea
jlee83@ajou.ac.kr
Korean Journal of Chemical Engineering, December 2022, 39(12), 3343-3349(7), 10.1007/s11814-022-1127-y
downloadDownload PDF

Abstract

Polyester fiber is a high-molecular-weight compound made from fossil fuels and is used in various synthetic fiber manufacturing processes. In this study, we performed non-catalytic and catalytic pyrolysis experiments using cobalt oxide as a catalyst to recover energy from polyester fiber. The experiment was carried out between 500- 900 ℃ in the presence of N2. Amount of oil formation was the highest at 600 ℃ in non-catalytic pyrolysis and oil formation of catalytic pyrolysis was the highest at 500 ℃. In both non-catalytic pyrolysis and catalytic pyrolysis, gas content was increased and char was decreased with increasing temperature. A marked difference was observed when the catalyst was used; the formation of char was suppressed and oil and gas yields increased. In the catalytic pyrolysis oil, benzoic acid compounds accounted for the largest proportion (16.15 wt%) at 900 ℃, but polycyclic aromatic hydrocarbons and phenols were not observed. Benzoic acid is an important precursor material used to synthesize other organic substances, such as phenol and caprolactam. The non-condensable gas content increased from 11.55 wt% to 22.39 wt%, with increasing temperature. In particular, H2 gas yield was 4.44 wt% at 900 ℃. Therefore, by using catalytic pyrolysis, high value-added chemicals such as benzoic acid compounds and H2 gas can be recovered at high yield at 900 ℃ from the polyester fiber. Consequently, unlike the existing treatment methods, the environmental impact of plastics can be reduced by catalytic pyrolysis.

References

Wang YL, Lee YH, Chiu IJ, Lin YF, Chiu HW, Int. J. Mol. Sci., 21, 1727 (2020)
Lee J, Kwon EE, Lam SS, Chen WH, Rinklebe J, Park YK, J. Clean Prod., 321, 128989 (2021)
Paletta A, Filho WL, Balogun AL, Foschi E, Bonoli A, J. Clean Prod., 241, 118149 (2019)
Ilyas M, Ahmad W, Khan H, Yousaf S, Khan K, Nazir S, Rev. Environ. Health, 33, 383 (2018)
Parvinzadeh M, Ebrahimi I, Appl. Surf. Sci., 257, 4062 (2011)
Liu Z, Li J, Zhao X, Li Z, Li Q, Nanomaterials, 8, 875 (2018)
Fontana GD, Mossotti R, Montarsolo A, Environ. Pollut., 264, 113960 (2020)
Dai Q, Jiang X, Jiang Y, Jin Y, Wang F, Chi Y, Yan J, Fuel, 130, 92 (2014)
Cholake ST, Pahlevani F, Gaikwad V, Millicer H, Sahajwalla V, Resour. Conserv. Recycl., 136, 9 (2018)
Rai PK, Lee J, Brown RJC, Kim KH, J. Clean Prod., 291, 125240 (2021)
Rai PK, Lee J, Brown RJC, Kim KH, J. Hazard. Mater., 403, 123910 (2021)
Law KL, Ann. Rev. Mar. Sci., 9, 205 (2017)
Jang YC, Lee G, Kwon Y, Lim JH, Jeong JH, Resour. Conserv. Recycl., 158, 104798 (2020)
Demiryürek O, Uysaltürk D, Text. Res. J., 83, 1740 (2013)
Ling C, Shi S, Hou W, Yan Z, Polym. Degrad. Stabil., 161, 157 (2019)
Cunliffe AM, Williams PT, Fuel, 82, 2223 (2003)
Yu X, Wang S, Zhang J, J. Mater. Sci., 53, 5458 (2017)
Lee N, Joo J, Lin KA, Lee J, Polymer, 13, 1198 (2021)
Rustagi N, Pradhan SK, Singh R, Indian J. Occup. Environ. Med., 15, 100 (2011)
Ighalo JO, Iwuozor KO, Ogunfowora LA, Abdulsalam A, Iwuchukwu FU, Itabana B, Bright OC, Igwegbe CA, J. Environ. Chem. Eng., 9, 106864 (2021)
Kwon EE, Kim S, Lee J, J. CO2 Util., 31, 173 (2019)
Joo J, Kwon EE, Lee J, Environ. Pollut., 287, 117621 (2021)
Cunliffe AM, Jones N, Williams PT, Environ. Technol., 24, 653 (2003)
Kim S, Lee N, Lee SW, Kim YT, Lee J, Chem. Eng. J., 412, 128626 (2021)
Kim S, Park C, Lee J, J. Hazard. Mater., 392, 122464 (2020)
Kim S, Lee J, J. Hazard. Mater., 393, 122449 (2020)
Bai L, Wyrwalski F, Lamonier JF, Khodakov AY, Monflier E, Ponchel A, Appl. Catal. B: Environ., 138-139, 381 (2013)
Budsaereechai S, Hunt AJ, Ngernyen Y, RSC Adv., 9, 5844 (2019)
Zhou N, Dai L, Lv Y, Li H, Deng W, Guo F, Chen P, Lei H, Ruan R, Chem. Eng. J., 418, 129412 (2021)
Zhang Y, Duan D, Lei H, Villota E, Ruan R, Appl. Energy, 251, 113337 (2019)
Lee T, Jung S, Park YK, Kim T, Wang H, Moon DH, Kwon EE, J. Hazard. Mater., 395, 122576 (2020)
Kwon D, Jung S, Moon DH, Tsang YF, Chen WH, Kwon EE, Chem. Eng. J., 437, 135524 (2022)
Weiland F, Qureshi MS, Wennebro J, Lindfors C, Ohra-Aho T, Shafaghat H, Johansson AC, Molecules, 26, 7317 (2021)
Park C, Lee N, Kim J, Lee J, Environ. Pollut., 270, 116045 (2021)
Li G, Wei W, Shao X, Nie L, Wang H, Yan X, Zhang R, J. Environ. Sci., 67, 78 (2018)
Heidi B, Helga J, Phys. Chem. Chem. Phys., 1, 3775 (1999)
Hansen N, Schenk M, Moshammer K, Kohse-Höinghaus K, Combust. Flame, 180, 250 (2017)
Bensabath T, Monnier H, Glaude PA, J. Anal. Appl. Pyrolysis, 122, 342 (2016)
Vourliotakis G, Skevis G, Founti MA, Energy Fuels, 25, 1950 (2011)
Sharma RK, Hajaligol MR, J. Anal. Appl. Pyrolysis, 66, 123 (2003)
Li S, Cai L, Ji H, Yang L, Li G, Nat. Commun., 7, 10443 (2016)
Zhu Y, Wang B, Liu X, Wang H, Wu H, Licht S, Green Chem., 16, 4758 (2014)
Park C, Choi H, Lin KYA, Kwon EE, Lee J, Energy, 230, 120876 (2021)
Jiang H, Hong W, Zhang Y, Deng S, Chen J, Yang C, Ding H, Fuel, 269, 117468 (2020)
Sánchez-Bastardo N, Schlögl R, Ruland H, Ind. Eng. Chem. Res., 60, 11855 (2021)
Vohra K, Vodonos A, Schwartz J, Marais EA, Sulprizio MP, Mickley LJ, Environ. Res., 195, 110754 (2021)
Uddin MN, Daud WMAW, Abbas HF, RSC Adv., 4, 10467 (2014)
Tuti S, Pepe F, Catal. Lett., 122, 196 (2007)
Jacobs G, Ji Y, Davis BH, Cronauer D, Kropf AJ, Marshall CL, Appl. Catal. A: Gen., 333, 177 (2007)
Lestinsky P, Grycova B, Pryszcz A, Martaus A, Matejova L, J. Anal. Appl. Pyrolysis, 124, 175 (2017)
Ramaiyan KP, Denoyer LH, Benavidez A, Garzon FH, Commun. Chem., 4, 139 (2021)
Wang X, Zhang P, Zhang Z, Yang L, Ding Q, Cui X, Wang J, Xing H, Ind. Eng. Chem. Res., 59, 3531 (2020)
Gao Y, Neal L, Ding D, Wu W, Baroi C, Gaffney AM, Li F, ACS Catal., 9, 8592 (2019)
Agarwal A, Sengupta D, El-Halwagi M, ACS Sustain. Chem. Eng., 6, 2407 (2018)
Kim S, Tsang YF, Kwon EE, Lin KYA, Lee J, Korean J. Chem. Eng., 36, 1 (2018)
Kim S, Kwon EE, Kim YT, Jung S, Kim HJ, Huber GW, Lee J, Green Chem., 21, 3715 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로