Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 10, 2022
Accepted May 26, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
The modelling of biosorption for rapid removal of organic matter with activated sludge biomass from real industrial effluents
Department of Industrial Ecology, University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia 1PLIVA Hrvatska, Prilaz baruna Filipovića 25, HR-10000 Zagreb, Croatia
mvukovic@fkit.hr
Korean Journal of Chemical Engineering, December 2022, 39(12), 3361-3368(8), 10.1007/s11814-022-1189-x
Download PDF
Abstract
Biosorption is becoming increasingly important for the treatment of pollutants due to its cost-effectiveness, environmental friendliness and efficiency. For a more sustainable environment, more studies need to focus on the application of real industrial effluents. Increasing the initial concentration of activated sludge increases the specific surface area of the sludge, which allows for greater sorption of sorbates. The optimal initial concentration of activated sludge in the process of biosorption of pollutants from pharmaceutical effluent was 5.12±0.13 g/L. The biosorption process can be described by the Temkin model, where the estimated values of BT and AT ranged from 29.11 to 76.08 and from 1.10 to 1.48 L/g, respectively. The overall efficiency of the biosorption process ranged from 9.5 to 40.2%. The removed toxicity averaged 41.1±7.88% for all experiments.
References
Zhou Y, Meng J, Zhang M, Chen S, He B, Zhao H, Li Q, Zhang S, Wang T, Environ. Int., 131, 104982 (2019)
Ali S, Peter AP, Chew KW, Munawaroh HSH, Show PL, Bioresour. Technol., 337, 125461 (2021)
Zhang X, Li X, Zhang Q, Peng Q, Zhang W, Gao F, Bioresour. Technol., 153, 160 (2014)
Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN, Environ. Int., 124, 336 (2019)
Doble M, Kumar A, Biotreatment of industrial effluents, Elsevier, London (2005).
Ranade VV, Bhandari VM, Industrial wastewater treatment, recycling, and reuse, Elsevier, London (2014).
Gadipelly C, Pérez-González A, Yadav GD, Ortiz I, Ibáñez R, Rathod VK, Marathe KV, Ind. Eng. Chem. Res., 53, 11571 (2014)
Derco J, Vrana B, in Biosorption, J. Derco Ed., IntechOpen (2018).
Kanaujiya DK, Paul T, Sinharoy A, Pakshirajan K, Curr. Pollut. Reports, 5, 112 (2019)
Lim CP, Neo JL, Mar’atusalihat E, Zhou Y, Ng WJ, Biochem. Eng. J., 114, 119 (2016)
Banihashemi B, Droste RL, Sci. Total Environ., 487, 813 (2014)
Marcelino RBP, Andrade LN, Starling MCVM, Amorim CC, Barbosa MLT, Lopes RP, Reis BG, Leão MMD, Brazilian J. Chem. Eng., 33, 445 (2016)
APHA, Standard Methods for the Examination of Water and Wastewater, Washington (2012).
ISO 11348-3:2007, Water quality (2007).
Idel-Aouad R, Valiente M, Gutiérrez-Bouzán C, Vilaseca M, Yaacoubi A, Tanouti B, López-Mesas M, J. Anal. Methods Chem., 2015, 945489 (2015)
Yu KL, Lee XJ, Ong HC, Chen WH, Chang JS, Lin CS, Show PL, Ling TC, Environ. Pollut., 272, 115986 (2021)
Ezeonuegbu BA, Machido DA, Whong CMZ, Japhet WS, Alexiou A, Elazab ST, Qusty N, Yaro CA, Batiha GES, Biotechnol. Reports, 30, e00614 (2021)
Al-Ghouti MA, Da’ana DA, J. Hazard. Mater., 393, 122383 (2020)
Ayawei N, Ebelegi AN, Wankasi D, J. Chem., 2017, 3039817 (2017)
Dada AO, Ojediran JO, Olalekan AP, Adv. Phys. Chem., 2013, 842425 (2013)
Amin MT, Alazba AA, Shafiq M, Sustainability, 7, 15302 (2015)
Mansour F, Al-Hindi M, Yahfoufi R, Ayoub GM, Ahmad MN, Rev. Environ. Sci. Biotechnol., 17, 109 (2018)
Zhou Y, Zhang L, Cheng Z, J. Mol. Liq., 212, 739 (2015)
Ali I, Asim M, Khan TA, J. Environ. Manage., 113, 170 (2012)
Kılıç Z, Atakol O, Aras S, Cansaran-Duman D, Çelikkol P, Emregul E, J. Air Waste Manage. Assoc., 64, 115 (2014)
DeCoursey WJ, Statistics and probability for engineering applications, Elsevier Science, Newnes (2003).
Kumara NTRN, Hamdan N, Petra MI, Tennakoon KU, Ekanayake P, J. Chem., 2014, 468975 (2014)
Savci S, Asian J. Chem., 25, 3175 (2013)
Coimbra RN, Calisto V, Ferreira CIA, Esteves VI, Otero M, Arab. J. Chem., 12, 3611 (2019)
Aksu Z, Process Biochem., 40, 997 (2005)
Yang SF, Lin CF, Yu-Chen Lin A, Hong PKA, Water Res., 45, 3389 (2011)
Domanovac MV, Runjavec MS, Meštrović E, J. Chem. Technol. Biotechnol., 94, 2721 (2019)
Lefebvre O, Shi X, Wu CH, Ng HY, Water Sci. Technol., 69, 855 (2014)
Yu Y, Wu B, Jiang L, Zhang XX, Ren HQ, Li M, Sci. Rep., 9, 3751 (2019)
Mostafaie A, Cardoso DN, Kamali M, Loureiro S, Toxics, 9, 176 (2021)
Cēbere B, Faltiņa E, Zelčāns N, Kalniņa D, Environ. Clim. Technol., 3, 41 (2009)
Ali S, Peter AP, Chew KW, Munawaroh HSH, Show PL, Bioresour. Technol., 337, 125461 (2021)
Zhang X, Li X, Zhang Q, Peng Q, Zhang W, Gao F, Bioresour. Technol., 153, 160 (2014)
Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN, Environ. Int., 124, 336 (2019)
Doble M, Kumar A, Biotreatment of industrial effluents, Elsevier, London (2005).
Ranade VV, Bhandari VM, Industrial wastewater treatment, recycling, and reuse, Elsevier, London (2014).
Gadipelly C, Pérez-González A, Yadav GD, Ortiz I, Ibáñez R, Rathod VK, Marathe KV, Ind. Eng. Chem. Res., 53, 11571 (2014)
Derco J, Vrana B, in Biosorption, J. Derco Ed., IntechOpen (2018).
Kanaujiya DK, Paul T, Sinharoy A, Pakshirajan K, Curr. Pollut. Reports, 5, 112 (2019)
Lim CP, Neo JL, Mar’atusalihat E, Zhou Y, Ng WJ, Biochem. Eng. J., 114, 119 (2016)
Banihashemi B, Droste RL, Sci. Total Environ., 487, 813 (2014)
Marcelino RBP, Andrade LN, Starling MCVM, Amorim CC, Barbosa MLT, Lopes RP, Reis BG, Leão MMD, Brazilian J. Chem. Eng., 33, 445 (2016)
APHA, Standard Methods for the Examination of Water and Wastewater, Washington (2012).
ISO 11348-3:2007, Water quality (2007).
Idel-Aouad R, Valiente M, Gutiérrez-Bouzán C, Vilaseca M, Yaacoubi A, Tanouti B, López-Mesas M, J. Anal. Methods Chem., 2015, 945489 (2015)
Yu KL, Lee XJ, Ong HC, Chen WH, Chang JS, Lin CS, Show PL, Ling TC, Environ. Pollut., 272, 115986 (2021)
Ezeonuegbu BA, Machido DA, Whong CMZ, Japhet WS, Alexiou A, Elazab ST, Qusty N, Yaro CA, Batiha GES, Biotechnol. Reports, 30, e00614 (2021)
Al-Ghouti MA, Da’ana DA, J. Hazard. Mater., 393, 122383 (2020)
Ayawei N, Ebelegi AN, Wankasi D, J. Chem., 2017, 3039817 (2017)
Dada AO, Ojediran JO, Olalekan AP, Adv. Phys. Chem., 2013, 842425 (2013)
Amin MT, Alazba AA, Shafiq M, Sustainability, 7, 15302 (2015)
Mansour F, Al-Hindi M, Yahfoufi R, Ayoub GM, Ahmad MN, Rev. Environ. Sci. Biotechnol., 17, 109 (2018)
Zhou Y, Zhang L, Cheng Z, J. Mol. Liq., 212, 739 (2015)
Ali I, Asim M, Khan TA, J. Environ. Manage., 113, 170 (2012)
Kılıç Z, Atakol O, Aras S, Cansaran-Duman D, Çelikkol P, Emregul E, J. Air Waste Manage. Assoc., 64, 115 (2014)
DeCoursey WJ, Statistics and probability for engineering applications, Elsevier Science, Newnes (2003).
Kumara NTRN, Hamdan N, Petra MI, Tennakoon KU, Ekanayake P, J. Chem., 2014, 468975 (2014)
Savci S, Asian J. Chem., 25, 3175 (2013)
Coimbra RN, Calisto V, Ferreira CIA, Esteves VI, Otero M, Arab. J. Chem., 12, 3611 (2019)
Aksu Z, Process Biochem., 40, 997 (2005)
Yang SF, Lin CF, Yu-Chen Lin A, Hong PKA, Water Res., 45, 3389 (2011)
Domanovac MV, Runjavec MS, Meštrović E, J. Chem. Technol. Biotechnol., 94, 2721 (2019)
Lefebvre O, Shi X, Wu CH, Ng HY, Water Sci. Technol., 69, 855 (2014)
Yu Y, Wu B, Jiang L, Zhang XX, Ren HQ, Li M, Sci. Rep., 9, 3751 (2019)
Mostafaie A, Cardoso DN, Kamali M, Loureiro S, Toxics, 9, 176 (2021)
Cēbere B, Faltiņa E, Zelčāns N, Kalniņa D, Environ. Clim. Technol., 3, 41 (2009)