ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 4, 2022
Accepted May 23, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effective separation of Zn, Fe, and Mn from roasting-water leaching solution of blast-furnace dust using a precipitation-solvent extraction process

1Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China 2Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 3, China 4University of Chinese Academy of Sciences, Beijing 100049, China
jjrng0906@163.com
Korean Journal of Chemical Engineering, December 2022, 39(12), 3442-3451(10), 10.1007/s11814-022-1185-1
downloadDownload PDF

Abstract

Selective extraction of Zn from blast furnace dust can be achieved by the ammonium sulfate roasting-water leaching process. An innovative method for effective separation of Zn, Fe, and Mn from roasting-water leaching solution of blast-furnace dust by precipitation-solvent extraction process is proposed in this research. The Fe of leaching solution was selectively converted into FePO4·2H2O precipitate by using Na2HPO4 as precipitant. The precipitation efficiency of Fe reached 99.17%, while that of Zn was only 0.20% under the solution pH of 2.2, molar ratio of Na2HPO4 to Fe of 1.2 : 1, reaction temperature of 30 ℃, and reaction time of 50 min. The zinc in the filtrate was extracted with Cyanex 302, and Zn (99.94%) was extracted through two-stage countercurrent extraction under initial pH of 3.4, Cyanex 302 concentration of 25%, and O/A of 2 : 1. Subsequently, Zn (99.96%) of the organic phase was stripped using 0.75 mol/L sulfuric acid by one-stage countercurrent stripping. Furthermore, according to thermodynamic calculation, it is proved that extracting Zn from sulfuric acid solution with Cyanex 302 is an exothermic reaction. The proposed process flowsheet may be used to efficiently recover Zn and Fe from blast-furnace dust.

References

Wang YT, Cong WJ, Zeng YN, Zhang YQ, Liang JL, Li JG, Jiang LQ, Fang Z, Renew. Energy, 175, 1001 (2021)
Shen L, Qiao Y, Guo Y, Tan J, J. Hazard. Mater., 177, 495 (2010)
Xu J, Wang N, Chen M, Zhou Z, Wang P, Appl. Mathematical Modelling, 75, 535 (2019)
Luo X, Wei C, Li X, Deng Z, Li M, Fan G, Hydrometallurgy, 197, 105458 (2020)
Zhong YW, Qiu XL, Gao JT, Guo ZC, Energy Fuels, 31, 8415 (2017)
Lanzerstorfer C, Kröppl M, Resour. Conserv. Recycl., 86, 132 (2014)
Hu WT, Xia HW, Pan DI, Wei XI, Li J, Dai XJ, Yang F, Lu X, Wang HJ, Miner. Eng., 116, 24 (2018)
Chang YC, Choi D, Takamizawa K, Kikuchi S, Process Biochem., 48, 694 (2013)
Nayak NP, Mater Today, 50, 2078 (2022)
Holloway PC, Etsell TH, Murland AL, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 38, 781 (2007)
Ye L, Peng Z, Ye Q, Wang L, Augustine R, Perez M, Liu Y, Liu M, Tang H, Rao M, Li G, Jiang T, Waste Manage., 135, 389 (2021)
Rath SS, Rao DS, Tripathy SK, Biswal SK, Process Saf. Environ. Protect., 117, 232 (2018)
Hu T, Sun T, Kou J, Geng C, Wang X, Chen C, Int. J. Miner. Process., 165, 28 (2017)
Zhang DC, Zhang XW, Yang TZ, Rao S, Hu W, Liu WF, Chen L, Hydrometallurgy, 169, 219 (2017)
Steer JM, Griffiths AJ, Hydrometallurgy, 140, 34 (2013)
Li Y, Liu H, Peng B, Min X, Hu M, Peng N, Yuang Y, Lei J, Hydrometallurgy, 158, 42 (2015)
Stewart DJC, Barron AR, Resour. Conserv. Recycl., 157, 104746 (2020)
Wang J, Zhang Y, Cui K, Fu T, Gao J, Hussain S, AlGarni TS, J. Clean Prod., 298, 126788 (2021)
Holloway PC, Etsell TH, Murland AL, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 38, 793 (2007)
Xia DK, Pickles CA, Can. Metall. Q., 38, 175 (1999)
Deng X, Huang R, Lv X, Yang J, Yang J, Process Saf. Environ. Protect., 162, 746 (2022)
Luo X, Wang C, Shi X, Li X, Wei C, Li M, Deng Z, Waste Manage., 139, 116 (2022)
Leclerc N, Meux E, Lecuire JM, Hydrometallurgy, 70, 175 (2003)
Li M, Peng B, Chai L, Peng N, Yan H, Hou D, J. Hazard. Mater., 237-238, 323 (2012)
Peng N, Peng B, Chai L, Liu W, Li M, Yuan Y, Yan H, Hou DK, Procedia Environ. Sci., 16, 705 (2012)
Kashyap V, Taylor P, Miner. Eng., 176, 107364 (2022)
Yan H, Chai LY, Peng B, Li M, Peng N, Hou DK, Miner. Eng., 55, 103 (2014)
Wu CC, Chang FC, Chen WS, Tsai MS, Wang YN, J. Environ. Manage., 143, 208 (2014)
Saleh HI, Hassan KM, J. Chem. Technol. Biotechnol., 79, 397 (2004)
Liu XW, Feng YL, Li HR, Yang ZC, Cai ZL, Int. J. Miner. Metall. Mater., 19, 377 (2012)
Ju J, Feng Y, Li H, Liu S, Xu C, Sep. Purif. Technol., 276, 119335 (2021)
Ding K, Liu Y, Tang J, Zhou Y, Lin X, Hu J, Sep. Purif. Technol., 190, 100 (2018)
Guo P, Kong L, Hu X, Peng X, Wang X, J. Hazard. Mater., 402, 123836 (2021)
Bao S, Tang L, Li K, Ning P, Peng J, Guo H, Zhu T, Liu Y, J. Colloid Interface Sci., 462, 235 (2016)
Xu C, Zhou J, Yin S, Wang Y, Zhang L, Hu S, Li X, Li S, Sep. Purif. Technol., 278, 119579 (2021)
Regel-Rosocka M, Wisniewski M, Hydrometallurgy, 110, 85 (2011)
Martins JMA, Guimarães AS, Dutra AJB, Mansur MB, J. Mater. Res. Technol., 9, 2319 (2020)
Katoozi E, Anari Z, Miner. Eng., 174, 107255 (2021)
Kani OSM, Azizitorghabeh A, Rashchi F, Miner. Eng., 169, 106944 (2021)
Jafari H, Abdollahi H, Gharabaghi M, Balesini AA, Sep. Purif. Technol., 197, 210 (2018)
Li X, Deng Z, Li C, Wei C, Li M, Fan G, Rong H, Hydrometallurgy, 156, 1 (2015)
Hosseini T, Mostoufi N, Daneshpayeh M, Rashchi F, Hydrometallurgy, 105, 277 (2011)
Baba AA, Adekola FA, Hydrometallurgy, 109, 187 (2011)
Biswas RK, Habib MA, Karmakar AK, Tanzin S, Waste Manage., 51, 149 (2016)
Cole PM, Sole KC, Miner. Process. Extr. Metall. Rev., 24, 91 (2003)
Wu H, Duan S, Liu D, Guo X, Yi A, Li H, Sep. Purif. Technol., 269, 118750 (2021)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로