Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 20, 2021
Accepted August 11, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Solid degradation and its kinetics on phenol-rich bio-oil production from pyrolysis of coconut shell and Lamtoro wood residue
1Department of Mechanical Engineering, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia 2Department of Mechanical and Biosystem Engineering, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), IPB Darmaga Campus, PO BOX 220, Bogor, West Java 16680, Indonesia 3Surfactant and Bioenergy Research Center (SBRC), IPB University (Bogor Agricultural University), Jl. Pajajaran No. 1, IPB Baranangsiang Campus, Bogor, West Java 16144, Indonesia 4PLN UPDK Gorontalo, Jl. Prof. DR. Jhon Aryo Katili, Tanggikiki, Gorontalo, Indonesia
apip.amrullah@ulm.ac.id, obiefarobie@apps.ipb.ac.id
Korean Journal of Chemical Engineering, February 2022, 39(2), 389-397(9), 10.1007/s11814-021-0923-0
Download PDF
Abstract
The pyrolysis of coconut shell (CS) only, lamtoro (Leucaena leucocephala) wood residues (LWR) only, and a CS/LWR mixture was experimentally studied herein for the first time. Additionally, the reaction kinetics of solid destruction during the pyrolysis process of CS and LWR was deduced. An experimental investigation was carried out in a batch reactor at the different pyrolysis temperatures (300-500 °C). The highest phenol yield (30.97%) was observed at 500 °C for the pyrolysis of CS. The activation energy and pre-exponential factor and for degradation of solid were successfully determined for the first time using the Arrhenius equation. The activation energy was determined in the range of 121-153 kJ mol?1 for the temperature range of 300-500 °C. Meanwhile, the pre-exponential factors of 3.51 x 1010 s-1, 4.77 x 1010 s-1, and 5.38 x 1010 s-1 were calculated for the pyrolysis of CS only, LWR only, and a CS/LWR mixture, respectively. This research presents the mitigation for the alleviation of the energy crisis and to convert underutilized biomass to high-value products.
References
Dahadha S, Amin Z, Lakeh AAB, Elbeshbishy E, Energy Fuels, 31, 10347 (2017)
Ahmed A, Abu Bakar MS, Sukri RS, Hussain M, Farooq A, Moogi S, Park YK, Energy Conv. Manag., 226, 113502 (2020)
Huang H, Liu J, Liu H, Evrendilek F, Buyukada M, Energy Conv. Manag., 207, 112552 (2020)
Feng SH, Yuan ZS, Leitch M, Xu CC, Fuel, 116, 214 (2014)
Huang Y, Wei L, Crandall Z, Julson J, Gu Z, Fuel, 150, 663 (2015)
Nazari L, Yuan Z, Souzanchi S, Ray MB, Xu C, Fuel, 162, 83 (2015)
Paysepar H, Rao KTV, Yuan Z, Shui H, Xu C, J. Anal. Appl. Pyrolysis, 149, 104842 (2020)
Dahmen N, Lewandowski I, Zibek S, Weidtmann A, GCB Bioenergy, 11, 12586 (2019)
Piotrowski S, Carus M, Essel R, Biotechnol, 11, 29021 (2015)
Garrido RA, Reckamp JM, Satrio JA, Environ. - MDPI, 4, 404009 (2017)
Farobie O, Changkiendee P, Inoue S, Inoue T, Kawai Y, Noguchi T, Tanigawa H, Matsumura Y, Ind. Eng. Chem. Res., 56, 6407 (2017)
Samanmulya T, Farobie O, Matsumura Y, J. Japan Pet. Inst., 60, 34 (2017)
Zhong S, Zhang B, Liu C, Shujaa aldeen A, Energy Conv. Manag., 228, 113717 (2021)
Zong P, Jiang Y, Tian Y, Li J, Yuan M, Ji Y, Chen M, Li D, Qiao Y, Energy Conv. Manag., 216, 112777 (2020)
Lv X, Liu H, Huang Y, Yao J, Yuan H, Yin X, Wu C, Energy Conv. Manag., 229, 113772 (2021)
Fan Y, Zhu M, Jin L, Cui E, Zhu L, Cai Y, Zhao W, Renew. Energy, 157, 115 (2020)
Razavian M, Fatemi S, J. Anal. Appl. Pyrolysis, 156, 105093 (2021)
Bu Q, Lei H, Ren S, Wang L, Holladay J, Zhang Q, Tang J, Ruan R, Bioresour. Technol., 102, 7007 (2011)
Del Olmo M, Zafra A, Jurado AB, Vilchez JL, Talanta, 50, 9140 (2000)
Choi GG, Oh SJ, Lee SJ, Kim JS, Bioresour. Technol., 178, 107 (2015)
Fan L, Zhang Y, Liu S, et al., Bioresour. Technol., 241, 129 (2017)
Idris R, Chong WWF, Ali A, Idris S, Hasan MF, Ani FN, Chong CT, Environ. Technol. Innov., 21, 101291 (2021)
Feria MJ, Lopez F, Garcia JC, Perez A, Zamudio MAM, Alfaro A, Biomass Bioenergy, 35, 2233 (2011)
ASTM D3172-13, ASTM International, West Conshohocken, PA, 13, 3172 (2013).
Amrullah A, Farobie O, Widyanto R, Bioresour. Technol. Rep., 13, 100642 (2021)
Garg R, Anand N, Kumar D, Renew. Energy, 96, 171 (2016)
Wang Z, Liang D, Li Y, Tian H, Liang J, J. Anal. Appl. Pyrolysis, 158, 105060 (2021)
Varma AK, Thakur LS, Shankar R, Mondal P, Waste Manage., 89, 235 (2019)
Junming X, Jianchun J, Yunjuan S, Yanju L, Biomass Bioenergy, 32, 1061 (2008)
Guzelciftci B, Park KB, Kim JS, Energy, 200, 117536 (2020)
Luo Z, Wang S, Liao Y, Zhou J, Gu Y, Cen K, Biomass Bioenergy, 26, 462 (2004)
Kim JS, Bioresour. Technol., 178, 121 (2015)
Amrullah A, Paksung N, Matsumura Y, Korean J. Chem. Eng., 36, 11814 (2019)
Genieva S, Gonsalvesh L, Georgieva V, Tavlieva M, Vlaev L, Thermochim. Acta, 698, 178877 (2021)
Ahmed A, Abu Bakar MS, Sukri RS, Hussain M, Farooq A, Moogi S, Park YK, Energy Conv. Manag., 226, 113502 (2020)
Huang H, Liu J, Liu H, Evrendilek F, Buyukada M, Energy Conv. Manag., 207, 112552 (2020)
Feng SH, Yuan ZS, Leitch M, Xu CC, Fuel, 116, 214 (2014)
Huang Y, Wei L, Crandall Z, Julson J, Gu Z, Fuel, 150, 663 (2015)
Nazari L, Yuan Z, Souzanchi S, Ray MB, Xu C, Fuel, 162, 83 (2015)
Paysepar H, Rao KTV, Yuan Z, Shui H, Xu C, J. Anal. Appl. Pyrolysis, 149, 104842 (2020)
Dahmen N, Lewandowski I, Zibek S, Weidtmann A, GCB Bioenergy, 11, 12586 (2019)
Piotrowski S, Carus M, Essel R, Biotechnol, 11, 29021 (2015)
Garrido RA, Reckamp JM, Satrio JA, Environ. - MDPI, 4, 404009 (2017)
Farobie O, Changkiendee P, Inoue S, Inoue T, Kawai Y, Noguchi T, Tanigawa H, Matsumura Y, Ind. Eng. Chem. Res., 56, 6407 (2017)
Samanmulya T, Farobie O, Matsumura Y, J. Japan Pet. Inst., 60, 34 (2017)
Zhong S, Zhang B, Liu C, Shujaa aldeen A, Energy Conv. Manag., 228, 113717 (2021)
Zong P, Jiang Y, Tian Y, Li J, Yuan M, Ji Y, Chen M, Li D, Qiao Y, Energy Conv. Manag., 216, 112777 (2020)
Lv X, Liu H, Huang Y, Yao J, Yuan H, Yin X, Wu C, Energy Conv. Manag., 229, 113772 (2021)
Fan Y, Zhu M, Jin L, Cui E, Zhu L, Cai Y, Zhao W, Renew. Energy, 157, 115 (2020)
Razavian M, Fatemi S, J. Anal. Appl. Pyrolysis, 156, 105093 (2021)
Bu Q, Lei H, Ren S, Wang L, Holladay J, Zhang Q, Tang J, Ruan R, Bioresour. Technol., 102, 7007 (2011)
Del Olmo M, Zafra A, Jurado AB, Vilchez JL, Talanta, 50, 9140 (2000)
Choi GG, Oh SJ, Lee SJ, Kim JS, Bioresour. Technol., 178, 107 (2015)
Fan L, Zhang Y, Liu S, et al., Bioresour. Technol., 241, 129 (2017)
Idris R, Chong WWF, Ali A, Idris S, Hasan MF, Ani FN, Chong CT, Environ. Technol. Innov., 21, 101291 (2021)
Feria MJ, Lopez F, Garcia JC, Perez A, Zamudio MAM, Alfaro A, Biomass Bioenergy, 35, 2233 (2011)
ASTM D3172-13, ASTM International, West Conshohocken, PA, 13, 3172 (2013).
Amrullah A, Farobie O, Widyanto R, Bioresour. Technol. Rep., 13, 100642 (2021)
Garg R, Anand N, Kumar D, Renew. Energy, 96, 171 (2016)
Wang Z, Liang D, Li Y, Tian H, Liang J, J. Anal. Appl. Pyrolysis, 158, 105060 (2021)
Varma AK, Thakur LS, Shankar R, Mondal P, Waste Manage., 89, 235 (2019)
Junming X, Jianchun J, Yunjuan S, Yanju L, Biomass Bioenergy, 32, 1061 (2008)
Guzelciftci B, Park KB, Kim JS, Energy, 200, 117536 (2020)
Luo Z, Wang S, Liao Y, Zhou J, Gu Y, Cen K, Biomass Bioenergy, 26, 462 (2004)
Kim JS, Bioresour. Technol., 178, 121 (2015)
Amrullah A, Paksung N, Matsumura Y, Korean J. Chem. Eng., 36, 11814 (2019)
Genieva S, Gonsalvesh L, Georgieva V, Tavlieva M, Vlaev L, Thermochim. Acta, 698, 178877 (2021)