ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 26, 2021
Accepted November 29, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Ultrasound-negative pressure cavitation extraction of paclitaxel from Taxus chinensis

Department of Chemical Engineering, Kongju National University, Cheonan 31080, Korea
Korean Journal of Chemical Engineering, February 2022, 39(2), 398-407(10), 10.1007/s11814-021-1028-5
downloadDownload PDF

Abstract

An ultrasound-negative pressure cavitation extraction method was developed to remarkably improve the recovery efficiency of paclitaxel from Taxus chinensis. The paclitaxel yield was 94-100% through ultrasound-negative pressure cavitation extraction with an extraction time of 3 to 8min. In particular, most paclitaxel could be recovered within 3min of extraction at ultrasonic power of 380W/negative pressure of -260mmHg. Observation of the biomass surface with SEM before and after extraction showed that as the ultrasonic power and negative pressure increased, the surface was more disrupted. In addition, a pseudo-second order model was suitable for the kinetic analysis, and intraparticle diffusion played a dominant role in the overall extraction rate according to the intraparticle diffusion model. As the ultrasonic power and negative pressure increased, the extraction rate constant (6.8816-11.6105mL/mg·min), the effective diffusion coefficient (1.550 x 10-12-11.528 x 10-12m2/s), and the mass transfer coefficient (2.222 x 10-7-5.149 x 10-7 m/s) increased.

References

Zhu L, Chen L, Cell. Mol. Biol. Lett., 24, 40 (2019)
Caillaud M, Patel NH, White A, et al., Brain Behav. Immun., 93, 172 (2021)
Jang YS, Kim JH, Biotechnol. Bioprocess Eng., 24, 529 (2019)
Ghorbani M, Pourjafar F, Saffari M, Asgari Y, Meta Gene, 26, 100800 (2020)
Sun T, Liu Y, Li M, Yu H, Piao H, Mol. Cell. Probes, 53, 101602 (2020)
Modarresi-Darreh B, Kamali K, Kalantar SM, Dehghanizadeh H, Aflatoonian B, Eurasia J. Biosci., 2, 413 (2018)
Pyo SH, Choi HJ, Han BH, J. Chromatogr. A, 1123, 15 (2006)
Kang HJ, Kim JH, Process Biochem., 99, 316 (2020)
Seo HW, Kim JH, Process Biochem., 87, 238 (2019)
Kim JH, Lim CB, Kang IS, Hong SS, Lee HS, Korean J. Biotechnol. Bioeng., 15, 337 (2000)
Kim GJ, Kim JH, Korean J. Chem. Eng., 32(6), 1023 (2015)
Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 25, 86 (2020)
Kang HJ, Kim JH, Korean J. Chem. Eng., 36(12), 1965 (2019)
Yoo KW, Kim JH, Biotechnol. Bioprocess Eng., 23, 532 (2018)
Kim JH, Korean Chem. Eng. Res., 58(2), 273 (2020)
Chen G Bu F, Chen X, Li C, Wang S, Kan J, Int. J. Biol. Macromol., 112, 655 (2018)
Rakshit M, Srivastav PP, J. Food Process. Preserv., 45, e15078 (2020)
Tang W, Wang B, Wang M, Wang M, J. Appl. Res. Med. Aromat. Plants, 25, 100331 (2021)
Upadhyay R, Nachiappan G, Mishra HN, Food Sci. Biotechnol., 24, 1951 (2015)
Filianty F, IOP Conf. Ser.: Earth Environ. Sci., 443, 012104 (2020)
Roohinejad S, Koubaa M, Barba FJ, Greiner R, Orlien V, Lebovka NI, Trends Food Sci. Technol., 52, 98 (2016)
Soria AC, Villamiel M, Trends Food Sci. Technol., 21, 323 (2010)
Tan Z, Li Q, Wang C, Zhou W, Yang Y, Wang H, Yi Y, Li F, Molecules, 22, 1483 (2017)
Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 24, 513 (2019)
Langergren S, Svenska BK, Veter. Hand., 24, 1 (1898)
Rakotondramasy-Rabesiaka L, Havet JL, Porte C, Fauduet H, Sep. Purif. Technol., 54(2), 253 (2007)
Ho YS, Harouna-Oumarou HA, Fauduet H, Porte C, Sep. Purif. Technol., 45(3), 169 (2005)
Weber WJ, Morris JC, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31 (1963)
Krishnan RY, Rajan KS, Sep. Purif. Technol., 157, 169 (2016)
Krishnan RY, Chandran MN, Vadivel V, Rajan KS, Sep. Purif. Technol., 170, 224 (2016)
Rakotondramasy-Rabesiaka L, Havet JL, Porte C, Fauduet H, Sep. Purif. Technol., 76(2), 126 (2010)
Wang G, Cui Q, Yin LJ, Li Y, Gao MZ, Meng Y, Li J, Zhang SD, Sep. Purif. Technol., 44, 115805 (2020)
Panda D, Manickam S, Appli. Sci., 9, 766 (2019)
Li S, Wang A, Liu L, Tian G, Xu F, Food Sci. Biotechnol., 28, 759 (2019)
Wang T, Guo N, Wang SX, Kou P, Zhao CJ, Fu YJ, Food Bioprod. Process., 108, 69 (2018)
Dular M, Pozar T, Zevnik J, Petkovsek R, Wear, 418-419, 13 (2019)
Kavitha D, Namasivayam C, Bioresour. Technol., 98(1), 14 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로