ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 20, 2021
Accepted October 24, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hydrothermal synthesis and characterization of quartz nanocrystals - Implications from a simple kinetic growth model

School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
sungwook.chung@pusan.ac.kr
Korean Journal of Chemical Engineering, February 2022, 39(2), 440-450(11), 10.1007/s11814-021-0996-9
downloadDownload PDF

Abstract

Obtaining quartz nanocrystals (NCs) of high purity and uniform sizes remains a challenging problem. In this report, the synthesis and characterization of quartz NCs under hydrothermal conditions was investigated and the corresponding mathematical models were introduced to elucidate the growth kinetics of quartz NCs. Amorphous silica nanoparticles were dissolved in aqueous solutions followed by mild hydrothermal reactions, resulting in NCs with relatively uniform sizes and shapes. The NCs were made from highly crystalline α-quartz. Their hydrothermal growth process over an induction period of ~3 hr initially yielded amorphous silica nanoparticles that were aggregated into clusters. The crystallinity of α-quartz emerged from the products of the nanoparticle clusters after the induction period, which likely involved an amorphous to crystalline transition. The NCs continued to grow with increasing time. The growth kinetics exhibited a dependence on the square root of time, which has not been observed for other quartz nanocrystalline systems. The analysis suggests that the process is reaction-limited, not diffusion-limited, likely governed by the dissolved silicate monomer flux to the surface of the growing NCs followed by first-order rate-limiting attachment kinetics. This study highlights the growth kinetics of quartz NCs by unveiling the complex nature of multistep growth processes, offering an improved hydrothermal method for fine-tuning the size and morphology of quartz NCs, which have potential optoelectronics, sensing, and rechargeable battery, and novel biorefinery process applications.

References

Deng H, Yin J, Ma J, Zhou J, Zhang L, Gao L, Jiao T, Appl. Surf. Sci., 543, 148821 (2021)
Geng R, Chang R, Zou Q, Shen G, Jiao T, Yan X, Small, 17, 200811 (2021)
Qian C, Yin J, Zhao J, Li X, Wang S, Bai Z, Jiao T, Colloids Surf. A: Physicochem. Eng. Asp., 610, 125752 (2021)
Xu Y, Wang R, Wang J, Li J, Jiao T, Liu Z, Chem. Eng. J., 417, 129233 (2021)
Hyde Emily D. E. R., Seyfaee Ahmad, Neville Frances, Moreno-Atanasio Roberto, Ind. Eng. Chem. Res., 55(33), 8891 (2016)
Jang EH, Pack SP, Kim I, Chung S, Sci. Rep., 10, 5558 (2020)
Qiao G, Liu L, Hao X, Zheng J, Liu W, Gao J, Zhang CC, Wang Q, Chem. Eng. J., 382, 122907 (2020)
Zhou Z, Zheng Y, Gao J, Jiang L, Wang Q, J. Sol-Gel Sci. Technol., 77, 205 (2016)
Pagliaro M, Silica-based materials for advanced chemical applications, Royal Society of Chemistry (2009).
Mason B, Berry LG, Elements of mineralogy, W. H. Freeman, San Francisco (1968).
Vatalis KI, Charalambides G, Benetis NP, Procedia Econ. Financ., 24, 734 (2015)
Ballato A, in Piezoelectricity: Evolution and future of a technology, Berlin Heidelberg, Berlin, Heidelberg (2008).
Saigusa Y, in Advanced piezoelectric materials (second edition), K. Uchino, Ed., Woodhead Publishing (2017).
Yoder CH, in Ionic compounds: Applications of chemistry to mineralogy, Wiley (2006).
Spearing DR, Farnan I, Stebbins JF, Phys. Chem. Miner., 19, 307 (1992)
Bettermann P, Liebau F, Contrib. Mineral Petrol., 53, 25 (1975)
Fyfe WS, McKay DS, Am. Mineral., 47, 83 (1962)
Jung YH, Pack SP, Chung S, Mater. Res. Bull., 101, 67 (2018)
Liu J, Wang L, Wang J, Zhang LT, Mater. Res. Bull., 48(2), 416 (2013)
Wang X, Zhuang J, Peng Q, Li YD, Nature, 437, 121 (2005)
Yoshimura M, Byrappa K, J. Mater. Sci., 43(7), 2085 (2008)
Byrappa K, Keerthiraj N, Byrappa SM, in Handbook of crystal growth, P. Rudolph, Ed., Elsevier, Boston (2015).
Cambon O, Haines J, Crystals, 7, 38 (2017)
Hervey PR, Foise JW, Min. Metall. Explor., 18, 1 (2001)
Johnson G, Foise J, in Encyclopedia of applied physics, VCH Publishers (1996).
Bertone JF, Cizeron J, Wahi RK, Bosworth JK, Colvin VL, Nano Lett., 3, 655 (2003)
Buckley P, Hargreaves N, Cooper S, Commun. Chem., 1, 49 (2018)
Jiang XM, Jiang YB, Brinker CJ, Chem. Commun., 47, 7524 (2011)
Moon GS, Chung SW, Appl. Chem. Eng., 31(6), 697 (2020)
Moon G, Lee N, Kang S, Park J, Kim YE, Lee SA, Chitumalla RK, Jang J, Choe Y, Oh YK, Chung S, Chem. Eng. J., 413, 127467 (2021)
Finnegan MF, Zhang H, Banfield JF, Chem. Mater., 20, 3443 (2008)
Laudise R, J. Am. Chem. Soc., 81, 562 (1959)
Michibayashi K, Imoto H, Phys. Chem. Miner., 39, 213 (2012)
Moxon T, Carpenter M, Mineral. Mag., 73, 551 (2009)
de Ruijter WJ, Sharma R, McCartney MR, Smith DJ, Ultramicroscopy, 57, 409 (1995)
Malm JO, O'Keefe MA, Ultramicroscopy, 68, 13 (1997)
Ihinger PD, Zink SI, Nature, 404(6780), 865 (2000)
Smith GS, Alexander LE, Acta Crystallogr., 16, 462 (1963)
Wei PH, Z Kristallogr, 92, 355 (1935)
Takeuchi M, Martra G, Coluccia S, Anpo M, J. Near Infrared Specrosc., 17, 373 (2009)
Barr TL, Appl. Surf. Sci., 15, 1 (1983)
Post P, Wurlitzer L, Maus-Friedrichs W, Weber AP, Nanomater., 8, 530 (2018)
Holder CF, Schaak RE, ACS Nano, 13, 7359 (2019)
Balbuena PB, Gubbins KE, Langmuir, 9, 1801 (1993)
Sing KSW, Pure Appl. Chem., 57, 603 (1985)
Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051 (2015)
Bullen CR, Mulvaney P, Nano Lett., 4, 2303 (2004)
LaMer V, Ind. Eng. Chem., 44, 1270 (1952)
LaMer VK, Dinegar RH, J. Am. Chem. Soc., 72, 4847 (1950)
Lee DK, Park SI, Lee JK, Hwang NM, Acta Mater., 55, 5281 (2007)
Lifshitz IM, Slyozov VV, J. Phys. Chem. Solids, 19, 35 (1961)
Lin X, Sorensen C, Klabunde K, J. Nanopart. Res., 2, 157 (2000)
Peng XG, Wickham J, Alivisatos AP, J. Am. Chem. Soc., 120(21), 5343 (1998)
Reiss H, J. Chem. Phys., 19, 482 (1951)
Robb DT, Privman V, Langmuir, 24(1), 26 (2008)
Saunders AE, Sigman MB, Korgel BA, J. Phys. Chem. B, 108(1), 193 (2004)
Sugimoto T, Adv. Colloid Interface Sci., 28, 65 (1987)
Talapin DV, Rogach AL, Haase M, Weller H, J. Phys. Chem. B, 105(49), 12278 (2001)
Wagner C, Z. Elektrochem., 65, 581 (1961)
Rempel JY, Bawendi MG, Jensen KF, J. Am. Chem. Soc., 131(12), 4479 (2009)
Wang F, Richards VN, Shields SP, Buhro WE, Chem. Mater., 26, 5 (2014)
Viswanatha R, Sarma DD, in Nanomaterials chemistry: Recent developments and new directions, Wiley-VCH Verlag GmbH & Co. KgaA (2007).
Ostwald W, Phys. Chem., 37, 385 (1901)
Perez M, Scr. Mater., 52, 709 (2005)
Tyrrell H, J. Chem. Educ., 41, 397 (1964)
Laudise RA, Chem. Eng. News, 65, 30 (1987)
Rebreanu L, Vanderborght JP, Chou L, Mar. Chem., 112, 230 (2008)
Chen YF, Johnson E, Peng XG, J. Am. Chem. Soc., 129(35), 10937 (2007)
Drofenik M, Kristl M, Znidarsic A, Hanzel D, Lisjak D, J. Am. Ceram. Soc., 90(7), 2057 (2007)
Jana NR, Peng XG, J. Am. Chem. Soc., 125(47), 14280 (2003)
Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG, J. Am. Chem. Soc., 129(45), 13939 (2007)
Meli L, Green PF, ACS Nano, 2, 1305 (2008)
Morales MP, Gonzalez-Carreno T, Serna CJ, J. Mater. Res., 7, 2538 (1992)
Murray CB, Norris DJ, Bawendi MG, J. Am. Chem. Soc., 115, 8706 (1993)
Owen JS, Chan EM, Liu HT, Alivisatos AP, J. Am. Chem. Soc., 132(51), 18206 (2010)
Qu L, Yu WW, Peng X, Nano Lett, 4, 465 (2004)
Stoeva S, Klabunde KJ, Sorensen CM, Dragieva I, J. Am. Chem. Soc., 124(10), 2305 (2002)
Thessing J, Qian JH, Chen HY, Pradhan N, Peng XG, J. Am. Chem. Soc., 129(10), 2736 (2007)
Zheng N, Fan J, Stucky GD, J. Am. Chem. Soc., 128(20), 6550 (2006)
Seshadri R, Subbanna GN, Vijayakrishnan V, Kulkarni GU, Ananthakrishna G, Rao CN, J. Phys. Chem., 99(15), 5639 (1995)
Westcott SL, Oldenburg SJ, Lee TR, Halas NJ, Langmuir, 14(19), 5396 (1998)
Xiao JY, Qi LM, Nanoscale, 3, 1383 (2011)
Lin L, Chen M, Qin HY, Peng XG, J. Am. Chem. Soc., 140(50), 17734 (2018)
Shankar R, Wu BB, Bigioni TP, J. Phys. Chem. C, 114, 15916 (2010)
Ruditskiy A, Zhao M, Gilroy KD, Bara M, Xia Y, Chem. Mater., 28, 8800 (2016)
Wong EM, Bonevich JE, Searson PC, J. Phys. Chem. B, 102(40), 7770 (1998)
Viswanatha R, Sapra S, Satpati B, Satyam PV, Dev BN, Sarma DD, J. Mater. Chem., 14, 661 (2004)
Cheong S, Watt J, Ingham B, Toney MF, Tilley RD, J. Am. Chem. Soc., 131(40), 14590 (2009)
Viswanatha R, Amenitsch H, Sarma DD, J. Am. Chem. Soc., 129(14), 4470 (2007)
Yao LY, Zhu YX, Liu CQ, Jiao RH, Lu YH, Tan RX, J. Chromatogr. B, 989, 122 (2015)
Woehl TJ, Chem. Mater., 32, 7569 (2020)
Zhang J, Huang F, Lin Z, Nanoscale, 2, 18 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로