ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 12, 2021
Accepted November 9, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Recent progress in electrochemical reduction of CO2 into formate and C2 compounds

The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall Room 105 1505, NE Stadium Way, Pullman, WA 99164, Vietnam 1Chemistry Department and Materials Science and Engineering Program, Washington State University, PO Box 644630, Pullman, WA 99164-4630, Vietnam
scudiero@wsu.edu
Korean Journal of Chemical Engineering, March 2022, 39(3), 461-474(14), 10.1007/s11814-021-1009-8
downloadDownload PDF

Abstract

Global warming and climate change enhanced by the high atmospheric CO2 concentration have been correlated to the frequency of extreme weather causing a significant amount of property damage and loss of human lives. Among current atmospheric CO2 concentration control strategies, the electrochemical reduction of CO2 (eCO2R) process is a promising technology that can utilize CO2 gas as a feedstock to produce valuable C1 and C2 compounds at room temperature. Since the eCO2R reaction is limited by high activation energy and mass transfer, the choice of the electrocatalyst and the configuration of the CO2 electrolyzer have a significant impact on the activity and selectivity of_x000D_ the eCO2R process. This review discusses current technological advancements of electrocatalytic materials and the design of the gas diffusion electrodes that increase energy efficiency and reduce the mass transfer resistance of the CO2 conversion into C1 with a focus on formate and C2 chemical compounds. A techno-economic analysis is briefly provided, and future and technical challenges of the CO2 conversion at the industrial scale into formate and C2 products are also addressed.

References

Lindsey R, National Oceanic and Atmospheric Administration (2020).
Lathi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF, Nature, 453, 379 (2008)
Blake ES, Zelinsky DA, National Oceanic and Atmospheric Administration and National Weather Service (2018).
Murphy JD, National Oceanic and Atmospheric Administration (2018).
Cangialosi JP, Latto AS, Berg R, National Oceanic and Atmospheric Administration and National Weather Service (2018).
Pasch RJ, Penny AB, Berg R, National Oceanic and Atmospheric Administration and National Weather Service (2019).
Flooded future: Global vulnerability to sea level rise worse than previously understood. Climate Central (2019).
C40 Cities, https://www.c40.org/other/the-future-we-don-twant-staying-afloat-the-urban-response-to-sea-level-rise., 2019.
Ystad PAM, Bolland O, Hillestad M, Energy Procedia, 23, 33 (2012)
Dave N, Do T, Palyman D, Feron PHM, Xu S, Gao S, Liu L, Energy Procedia, 4, 1869 (2011)
McCann M, Phan D, Wang X, Conway W, Burns R, Attalla M, Puxty G, Maeder M, J. Phys. Chem. A, 113, 5022 (2019)
Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
Danckwerts PV, Chem. Eng. Sci., 4, 443 (1979)
Rezazadeh F, Gale WF, Rochelle GT, Sachde D, Int. J. Greenhouse Gas Control, 58, 246 (2017)
Karimi M, Hillestad M, Svendsen HF, Energy Procedia, 23, 15 (2012)
Bert M, Davidson O; de Coninck H, Loos M, Meyer L, Cambridge University Press (2005).
Celia MA, Nordbotten JM, Bachu S, Dobossy M, Court B, Energy Procedia, 1, 2573 (2009)
Song J, Zhang D, Environ. Sci. Technol., 47, 9 (2013)
Kaiser P, Unde RB, Kern C, Jess A, Chem. Ing. Tech., 4, 489 (2013)
Fisher F, Tropsch H, Brennstoff-Chem, 4, 276 (1923)
Anderson RB, Catalysts for the Fischer-Tropsch synthesis: Chap. 2 in catalysis, Reinhold Publishing Corp, New York (1956).
Vayenas C, Modern aspects of electrochemistry, Springer, New York (2008).
Kuhl KP, Cave ER, Abram DN, Jaramillo TF, Energy Environ. Sci., 5, 7050 (2012)
Min X, Kanan MW, J. Am. Chem. Soc., 137, 4701 (2015)
Guo RH, Liu CF, Wei TC, Hu CC, Electrochem. Commun., 80, 24 (2017)
Valenti M, Prasad NP, Kas R, Bohra D, Ma M, Balasubramanian V, Chu L, Gimenez S, Bisquert J, Dam B, Smith WA, ACS Catal., 9, 3527 (2019)
Jouny M, Luc W, Jiao F, Ind. Eng. Chem. Res., 57, 2165 (2018)
Keith DW, Holmes G, Angelo DS, Heidel KA, Joule, 2, 1573 (2018)
Bolinger M, Seel J, Dana R, Utility-Scale Solar, Empirical Trends in Project Technology, Cost, Performance, and PPA Pricingin the United States ? 2019 Edition. Lawrence Berkeley National Laboratory (2019).
Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT,Kenis PJA, Masel RI, Science, 334, 643 (2011)
Manthiram K, Beberwyck BJ, Alivisatos AP, J. Am. Chem. Soc., 136, 13319 (2014)
Ren D, Ang BS, Yeo BS, ACS Catal., 6, 8239 (2016)
Dinh CT, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM,de Arquer FPG, Kiani A, Edwards JP, Luna PD, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH, Science, 360, 783 (2018)
Industry - Ethylene and Other Olefins. Dialogue on European Decarbonisation Strategies.
Zhang BA, Ozel T, Elias JS, Costentin C, Nocera DG, ACS Cent. Sci., 5, 1097 (2019)
Singh MR, Clarkab EL, Bell AT, Phys. Chem. Chem. Phys., 17, 18924 (2015)
L?we A, Rieg C, Hierlemann T, Salas N, Kopljar D, Wagner N, Klemm IE, ChemElectroChem, 6, 4497 (2019)
Xing Z, Hu L, Ripatti DS, Hu X, Feng X, Nat. Commun., 136, 1 (2021)
Azuma M, Hashimoto K, Watanabe M, Sakata T, J. Electrochem. Soc., 137, 1172 (1990)
Hegner R, Rosa LFM, Harnisch F, Appl. Catal. B: Environ., 238, 546 (2018)
Bohlen B, Wastl D, Radomski J, Sieber V, Vieir L, Electrochem. Commun., 110, 106597 (2020)
Innocent B, Liaigre D, Pasquier D, Ropital F, Leger JM, Kokoh KB, J. Appl. Electrochem., 39, 227 (2009)
Lv W, Zhang R, Gao P, Lei L, J. Power Sources, 253, 276 (2014)
Bertin E, Garbarino S, Roy C, Kazemi S, Guay D, J. CO2 Util., 19, 276 (2017)
Hori Y, Wakebe H, Tsukamoto T, Koga O, Electrochim. Acta, 39, 1833 (1994)
Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN, Kuhl KP, Hahn C, Nørskov JK, Jaramillo TF, ACS Catal., 7, 4822 (2017)
Safaei TS, Mepham A, Zheng X, Pang Y, Dinh CT, Liu M, Sinton D, Kelley SO, Sargent EH, Nano Lett., 16, 7224 (2016)
Han N, Wang Y, Yang H, Deng J, Wu J, Li Y, Li Y, Nat. Commun., 9, 1320 (2018)
Chen W, Ji J, Feng X, Duan X, Qian G, Li P, Zhou X, Chen D,Yuan W, J. Am. Chem. Soc., 136, 167369 (2014)
Perez?Alonso FJ, McCarthy DN, Nierhoff A, Hernandez?Fernandez P, Strebel C, Stephens IEL, Nielsen JH, Chorkendorff I, Angew. Chem.-Int. Edit., 51, 4641 (2012)
?vila-Bol?var B, Garc?a-Cruz L, Montiel V, Solla-Gull?n J, Molecules, 24, 2032 (2019)
Luo W, Xie W, Li M, Zhang J, Z?ttel A, J. Mater. Chem. A, 7, 4505 (2019)
Qiu Y, Du J, Dai C, Dong W, Tao C, J. Electrochem. Soc., 165, 594 (2018)
Castillo AD, Alvarez-Guerra M, Irabien A, AIChE J., 60, 3557 (2014)
Castillo AD, Alvarez-Guerra M, Solla-Gull?n J, S?ez A, Montiel V, Irabien A, Appl. Energy, 157, 165 (2015)
Castillo AD, Alvarez-Guerra M, Solla-Gull?n J, S?ez A, Montiel V, Irabien A, J. CO2 Util., 18, 222 (2017)
Lee W, Kim YE, Youn MH, Jeong SK, Park KT, Angew. Chem.-Int. Edit., 57, 6883 (2018)
Podlovchenko BI, Kolyadko EA, Lu S, J. Electroanal. Chem., 373, 185 (1994)
Gabrielli C, Grand PP, Lasia A, Perrota H, J. Electrochem. Soc., 115, 1937 (2016)
Lee CW, Cho NH, Nam KT, Hwang YJ, Min BK, Nat. Commun., 10, 3919 (2019)
Hammer B, Nørskov JK, Adv. Catal., 45, 71 (2000)
Kortlever R, Peters I, Koper S, Koper MTM, ACS Catal., 5, 3916 (2015)
Jiang B, Zhang XG, Jiang K, Wu DY, Cai WB, J. Am. Chem. Soc., 140, 28880 (2018)
Wang WJ, Hwang S, Kim T, Ha S, Scudiero L, Electrochim. Acta, 387, 138531 (2021)
Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MTM, J. Phys. Chem. Lett., 6, 4073 (2015)
Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK, Energy Environ. Sci., 3, 1311 (2010)
Schoute KJP, Kwo Y, van der Ham CJM, Qin HZ, Koper MTM, Chem. Sci. J., 2, 1902 (2011)
Hori Y, Murata A, Takahashi R, J. Chem. Soc.-Faraday Trans., 85, 2309 (1989)
Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J, ChemPhysChem, 18, 3266 (2017)
Cheng T, Xiao H, Goddard III WA, J. Phys. Chem. Lett., 6, 4767 (2015)
Lum Y, Cheng T, Goddard III WA, Ager JW, J. Am. Chem. Soc., 140, 9337 (2018)
Raciti D, Mao M, Park JH, Wang C, J. Electrochem. Soc., 10, 799 (2018)
Xiao H, Cheng T, Goddard III WA, Sundararaman R, J. Am. Chem. Soc., 138, 483 (2016)
Liu X, Schlexer P, Xiao J, Ji Y, Wang L, Sandberg RB, Tang M,Brown KS, Peng H, Ringe S, Hahn C, Jaramillo TF, Nørskov JK, Chan K, Nat. Commun., 10, 32 (2019)
Verma S, Hamasaki Y, Kim C, Huang W, Lu S, Jhong HRM, Gewirth AA, Fujigaya T, Nakashima N, Kenis PJA, ACS Energy Lett., 3, 193 (2018)
Leonard ME, Clarke LE, Forner-Cuenca A, Brown SM, Brushett FR, ChemSusChem, 13, 400 (2020)
DeWulf DW, Jin T, Bard AJ, J. Electrochem. Soc., 136, 1686 (1989)
Hori Y, Takahashi R, Yoshinami Y, Murata A, J. Phys. Chem. B, 101, 7075 (1997)
Liu Z, Masel RI, Chen Q, Kutz R, Yang H, Lewinski K, Kaplun M, Luopa S, Lutz DR, J. CO2 Util., 15, 50 (2016)
Kutz RB, Chen Q, Yang H, Sajjad SD, Liu Z, Masel RI, Energy Technol., 5, 929 (2017)
Zheng T, Jiang K, Ta N, Hu Y, Zeng J, Liu J, Wang H, Joule, 3, 265 (2019)
Yin Z, Peng H, Wei X, Zhou H, Gong J, Huai M, Xiao L, Wang G, Lu J, Zhuang L, Energy Environ. Sci., 12, 2455 (2019)
Han L, Zhou W, Xiang C, Energy Lett., 3, 855 (2018)
Jouny M, Luc W, Jiao F, Nat. Catal, 1, 748 (2018)
Luc W, Fu X, Shi J, Lv JJ, Jouny M, Ko BH, Xu Y, Tu Q, Hu X, Wu J, Yue Q, Liu Y, Jiao F, Kang Y, Nat. Catal, 2, 423 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로