Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 19, 2021
Accepted October 8, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Physics-informed deep learning for data-driven solutionsof computational fluid dynamics
School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea 1Research & Development Institute, Hanwha Chemical Corporation, Gyeonggi-do 13488, Korea 2Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Korea 3Department of Chemical Engineering and Materials Science and Engineering, Ewha Womans University, Seoul 03760, Korea
jongmin@snu.ac.kr
Korean Journal of Chemical Engineering, March 2022, 39(3), 515-528(14), 10.1007/s11814-021-0979-x
Download PDF
Abstract
Computational fluid dynamics (CFD) is an essential tool for solving engineering problems that involve_x000D_
fluid dynamics. Especially in chemical engineering, fluid motion usually has extensive effects on system states, such as temperature and component concentration. However, due to the critical issue of long computational times for simulating CFD, application of CFD is limited for many real-time problems, such as real-time optimization and process control. In this study, we developed a surrogate model of a continuous stirred tank reactor (CSTR) with van de Vusse reaction using physics-informed neural network (PINN), which can train the governing equations of the system. We propose a PINN architecture that can train every governing equation which a chemical reactor system follows and can_x000D_
train a multi-reference frame system. Also, we investigated that PINN can resolve the problem of neural network that needs a large number of training data, is easily overfitted and cannot contain physical meaning. Furthermore, we modified the original PINN suggested by Raissi to solve the memory error and divergence problem with two methods: Mini-batch training and weighted loss function. We also suggest a similarity-based sampling strategy where the accuracy can be improved up to five times over random sampling. This work can provide a guideline for developing a high_x000D_
performance surrogate model of the chemical process.
Keywords
References
Sanderse B, Van der Pijl SP, Koren B, Wind Energy, 14, 799 (2011)
Zajaczkowski FJ, Haupt SE, Schmehl KJ, J. Wind Eng. Ind. Aerodyn., 99, 320 (2011)
Harris CK, Roekaerts D, Rosendal FJJ, Buitendijk FGJ, Daskopoulos P, Vreenegoor AJN, Wang H, Chem. Eng. Sci., 51, 1569 (1996)
Forrester AI, Keane AJ, Prog. Aerosp. Sci., 45, 50 (2009)
Park S, Na J, Kim M, Lee JM, Comput. Chem. Eng., 119, 25 (2018)
Lang YD, Malacina A, Biegler LT, Munteanu S, Madsen JI, Zitney SE, Energy Fuels, 23, 1695 (2009)
Ling J, Kurzawski A, Templeton J, J. Fluid Mech., 807, 155 (2016)
Na J, Jeon K, Lee WB, Chem. Eng. Sci., 181, 68 (2018)
Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborov? L, Rev. Mod. Phys., 91, 45002 (2019)
Jia X, Willard J, Karpatne A, Read JS, Zwart JA, Steinbach M, Kumar V, arXiv preprint 2017.
Raissi M, Perdikaris P, Karniadakis GE, J. Comp. Phys., 378, 686 (2019)
Mao Z, Jagtap AD, Karniadakis GE, Comput. Methods Appl. Mech. Eng., 360, 112789 (2020)
Yang XIA, Zafar S, Wang JX, Xiao H, Phys. Rev. Fluids, 4, 34602 (2019)
Jin X, Cai S, Li H, Karniadakis GE, J. Comp. Phys., 426, 109951 (2021)
Kuntanapreeda S, Marusak PM, Comput. Chem. Eng., 41, 10 (2012)
Chen CT, Peng ST, J. Process Control, 15, 515 (2005)
Doyle III FJ, Ogunnaike BA, Pearson RK, Automatica, 31, 697 (1995)
Akesson BM, Toivonen HT, J. Process Control, 16, 937 (2006)
Graichen K, Hagenmeyer V, Zeitz M, Comput. Chem. Eng., 33, 473 (2009)
Ridlehoover GA, Seagrave BC, Ind. Eng. Chem. Fund., 12, 444 (1973)
Meng C, Sun M, Yang J, Qiu M, Gu Y, In: Proc. of ML Systems Workshop in NIPS, December, 7 (2017).
Latz J, Stat Comput, 31, 1 (2021)
Keskar NS, Mudigere D, Nocedal J, Smelyanskiy M, Tang PTP, arXiv Preprint 2016.
Kalal Z, Matas J, Mikolajczyk K, BMVC, 2, 5 (2008)
Zajaczkowski FJ, Haupt SE, Schmehl KJ, J. Wind Eng. Ind. Aerodyn., 99, 320 (2011)
Harris CK, Roekaerts D, Rosendal FJJ, Buitendijk FGJ, Daskopoulos P, Vreenegoor AJN, Wang H, Chem. Eng. Sci., 51, 1569 (1996)
Forrester AI, Keane AJ, Prog. Aerosp. Sci., 45, 50 (2009)
Park S, Na J, Kim M, Lee JM, Comput. Chem. Eng., 119, 25 (2018)
Lang YD, Malacina A, Biegler LT, Munteanu S, Madsen JI, Zitney SE, Energy Fuels, 23, 1695 (2009)
Ling J, Kurzawski A, Templeton J, J. Fluid Mech., 807, 155 (2016)
Na J, Jeon K, Lee WB, Chem. Eng. Sci., 181, 68 (2018)
Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborov? L, Rev. Mod. Phys., 91, 45002 (2019)
Jia X, Willard J, Karpatne A, Read JS, Zwart JA, Steinbach M, Kumar V, arXiv preprint 2017.
Raissi M, Perdikaris P, Karniadakis GE, J. Comp. Phys., 378, 686 (2019)
Mao Z, Jagtap AD, Karniadakis GE, Comput. Methods Appl. Mech. Eng., 360, 112789 (2020)
Yang XIA, Zafar S, Wang JX, Xiao H, Phys. Rev. Fluids, 4, 34602 (2019)
Jin X, Cai S, Li H, Karniadakis GE, J. Comp. Phys., 426, 109951 (2021)
Kuntanapreeda S, Marusak PM, Comput. Chem. Eng., 41, 10 (2012)
Chen CT, Peng ST, J. Process Control, 15, 515 (2005)
Doyle III FJ, Ogunnaike BA, Pearson RK, Automatica, 31, 697 (1995)
Akesson BM, Toivonen HT, J. Process Control, 16, 937 (2006)
Graichen K, Hagenmeyer V, Zeitz M, Comput. Chem. Eng., 33, 473 (2009)
Ridlehoover GA, Seagrave BC, Ind. Eng. Chem. Fund., 12, 444 (1973)
Meng C, Sun M, Yang J, Qiu M, Gu Y, In: Proc. of ML Systems Workshop in NIPS, December, 7 (2017).
Latz J, Stat Comput, 31, 1 (2021)
Keskar NS, Mudigere D, Nocedal J, Smelyanskiy M, Tang PTP, arXiv Preprint 2016.
Kalal Z, Matas J, Mikolajczyk K, BMVC, 2, 5 (2008)