Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 7, 2021
Accepted July 3, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Oxygen absorption and desorption properties of YBaCo4O7+?monolithic oxygen carrier in the fixed-bed reactor
1Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Inner Mongolia, China 2Key laboratory of Efficient and Clean Combustion, School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, P. R. China
neuhlm@163.com
Korean Journal of Chemical Engineering, March 2022, 39(3), 695-705(11), 10.1007/s11814-021-0893-2
Download PDF
Abstract
The technology of chemical looping air separation, with the characteristics of simple operation, low cost, and low energy consumption, separates oxygen from air with the oxygen carrier. In this work, reaction properties of monolithic oxygen carriers were investigated in a fixed-bed apparatus, with the consideration of the reactor temperature, oxygen concentration, and reaction gas flow. The XRD results showed that active phase, Al2O3, and cordierite cannot react with each other in calcination processing. The SEM results showed that the micromorphology of oxygen carrier was loaded on cordierite honeycomb uniformly with sphere or sphere-like particles. Oxygen carriers show a faster oxygen release rate and a slower oxygen intake rate. With increasing of absorption temperature, oxygen concentration of inlet gas, and desorption temperature, the reaction rate per unit mass increases. With increasing of gas flow rate, the reaction rate per unit mass decreases. The maximum value of the reaction rate per unit mass was obtained by Y0.95Ti0.05BaCo4O7+α monolith sample. Samples substituted with Dy element showed fine performance of stability, as Dy substitution causes more serious local lattice distortions.
References
Moghtaderi B, Energy Fuels, 24(1), 190 (2010)
Song H, Shah K, Doroodchi E, Moghtaderi B, Energy Fuels, 28(1), 163 (2014)
DE Diego LF, Gac?a-labiano F, Ad?neza J, Gay?n P, Abad A, Corbella BM, Palacios JM, Fuel, 83(13), 17490 (2004)
Son N, Do JY, Park N, Kim US, Baek J, Lee D, Ryu H, Kang M, Korean J. Chem. Eng., 36(12), 1971 (2019)
Ge HJ, Shen LH, Feng F, Jiang SX, Appl. Therm. Eng., 85, 52 (2015)
Gao Y, Xiao J, Ye JD, Shen YT, Korean J. Chem. Eng., 37(1), 54 (2020)
Mattisson T, Lyngfelt A, Leion H, nt. J. Greenhouse Gas Control., 3(1), 11 (2009)
Siriwardane R, Tian HJ, Richards G, Simonyi T, James P, Energy Fuels, 23(8), 3885 (2009)
Tian H, Guo Q, Chem. Eng. Res. Des., 89(9), 1524 (2011)
Ryd?n M, Lyngfelt A, Mattisson T, Chen D, Holmen A, Bjorgum E, Int. J. Greenhouse Gas Control, 2(1), 21 (2008)
Nalbandian L, Evdou A, Zaspalis V, Int. J. Hydrogen Energ., 36(11), 6657 (2011)
Li BY, Zhang W, Qian YQ, Wang ZY, Korean J. Chem. Eng., 37(4), 688 (2020)
Gwak YR, Yun JH, Keel SI, Lee SH, Korean J. Chem. Eng., 37(11), 1878 (2020)
Mattisson T, Lyngfelt A, Leion H, Int. J. Greenhouse Gas Control, 3(1), 11 (2009)
Arjmand M, Azad A, Leion H, Lyngfelt A, Mattisson T, Energy Fuels, 25(11), 5493 (2011)
Nagai Y, Yamamoto T, Tanaka T, Yoshida S, Nonaka T, Okamoto T, Suda A, Sugiura M, Catal. Today, 74(3-4), 225 (2007)
Kaspar J, Fornasiero P, J. Solid State Chem., 171(1-2), 19 (2003)
Karppinen M, Yanauchi H, Otani S, Chem. Mater., 18(2), 490 (2006)
Kadota S, Kappinen M, Motohashi T, Yamauchi H, Chem. Mater., 20(20), 6378 (2008)
Wang S, Hao HS, Zhu BF, Jia JF, Hu X, J. Mater. Sci., 43(15), 5385 (2008)
Zhang SM, MA Dissertation, ZhengZhou University (2011).
Guo LJ, MA Dissertation, ZhengZhou University (2005).
Kozeeva LP, Kameneva MY, Lavrov AN, Podberezskaya NV, Inorg. Mater., 49(6), 626 (2013)
Parkkima O, Yamauchi H, Karppinen M, Chem. Mater., 25(4), 599 (2013)
Valldor M, Solid State Sci., 7(10), 1163 (2005)
Hou LM, Yu QB, Wang K, Wang T, Yang F, Zhang S, J. Therm. Anal. Calorim., 49(1), 317 (2019)
Hou LM, Yu QB, Wang K, Zhang S, Qin Q, Yang F, Korean J. Chem. Eng., 36(1), 84 (2019)
Qi AD, Wang SD, Fu GZ, Ni CJ, Wu DY, Appl. Catal. A: Gen., 281(1-2), 233 (2005)
Shi BB, Jiang ZD, Nat. Gas Chem. Ind., 38(3), 11 (2013)
Wang, MA Diss K, Shanghai Jiaotong University (2009).
Cimino S, Lisi L, Pirone R, Russo G, Turco M, Catal. Today, 59(1), 19 (2000)
Wang K, Yu QB, Qin Q, Zuo ZL, Wu TW, Chem. Eng. J., 287, 292 (2016)
Liu Q, Shi JJ, Zheng SD, Tao MN, He Y, Shi Y, Ind. Eng. Chem. Res., 53(29), 11677 (2014)
Hou LM, Yu QB, Wang T, Wang K, Qin Q, Qi ZF, Korean J. Chem. Eng., 35(3), 626 (2018)
Yaremchenko AA, Patrakeev MV, Kharton VV, Marques FMB, Leonidov IA, Kozhevnikov VL, Solid State Sci., 6(4), 357 (2004)
Song H, Shah K, Doroodchi E, Moghtaderi B, Energy Fuels, 28(1), 163 (2014)
DE Diego LF, Gac?a-labiano F, Ad?neza J, Gay?n P, Abad A, Corbella BM, Palacios JM, Fuel, 83(13), 17490 (2004)
Son N, Do JY, Park N, Kim US, Baek J, Lee D, Ryu H, Kang M, Korean J. Chem. Eng., 36(12), 1971 (2019)
Ge HJ, Shen LH, Feng F, Jiang SX, Appl. Therm. Eng., 85, 52 (2015)
Gao Y, Xiao J, Ye JD, Shen YT, Korean J. Chem. Eng., 37(1), 54 (2020)
Mattisson T, Lyngfelt A, Leion H, nt. J. Greenhouse Gas Control., 3(1), 11 (2009)
Siriwardane R, Tian HJ, Richards G, Simonyi T, James P, Energy Fuels, 23(8), 3885 (2009)
Tian H, Guo Q, Chem. Eng. Res. Des., 89(9), 1524 (2011)
Ryd?n M, Lyngfelt A, Mattisson T, Chen D, Holmen A, Bjorgum E, Int. J. Greenhouse Gas Control, 2(1), 21 (2008)
Nalbandian L, Evdou A, Zaspalis V, Int. J. Hydrogen Energ., 36(11), 6657 (2011)
Li BY, Zhang W, Qian YQ, Wang ZY, Korean J. Chem. Eng., 37(4), 688 (2020)
Gwak YR, Yun JH, Keel SI, Lee SH, Korean J. Chem. Eng., 37(11), 1878 (2020)
Mattisson T, Lyngfelt A, Leion H, Int. J. Greenhouse Gas Control, 3(1), 11 (2009)
Arjmand M, Azad A, Leion H, Lyngfelt A, Mattisson T, Energy Fuels, 25(11), 5493 (2011)
Nagai Y, Yamamoto T, Tanaka T, Yoshida S, Nonaka T, Okamoto T, Suda A, Sugiura M, Catal. Today, 74(3-4), 225 (2007)
Kaspar J, Fornasiero P, J. Solid State Chem., 171(1-2), 19 (2003)
Karppinen M, Yanauchi H, Otani S, Chem. Mater., 18(2), 490 (2006)
Kadota S, Kappinen M, Motohashi T, Yamauchi H, Chem. Mater., 20(20), 6378 (2008)
Wang S, Hao HS, Zhu BF, Jia JF, Hu X, J. Mater. Sci., 43(15), 5385 (2008)
Zhang SM, MA Dissertation, ZhengZhou University (2011).
Guo LJ, MA Dissertation, ZhengZhou University (2005).
Kozeeva LP, Kameneva MY, Lavrov AN, Podberezskaya NV, Inorg. Mater., 49(6), 626 (2013)
Parkkima O, Yamauchi H, Karppinen M, Chem. Mater., 25(4), 599 (2013)
Valldor M, Solid State Sci., 7(10), 1163 (2005)
Hou LM, Yu QB, Wang K, Wang T, Yang F, Zhang S, J. Therm. Anal. Calorim., 49(1), 317 (2019)
Hou LM, Yu QB, Wang K, Zhang S, Qin Q, Yang F, Korean J. Chem. Eng., 36(1), 84 (2019)
Qi AD, Wang SD, Fu GZ, Ni CJ, Wu DY, Appl. Catal. A: Gen., 281(1-2), 233 (2005)
Shi BB, Jiang ZD, Nat. Gas Chem. Ind., 38(3), 11 (2013)
Wang, MA Diss K, Shanghai Jiaotong University (2009).
Cimino S, Lisi L, Pirone R, Russo G, Turco M, Catal. Today, 59(1), 19 (2000)
Wang K, Yu QB, Qin Q, Zuo ZL, Wu TW, Chem. Eng. J., 287, 292 (2016)
Liu Q, Shi JJ, Zheng SD, Tao MN, He Y, Shi Y, Ind. Eng. Chem. Res., 53(29), 11677 (2014)
Hou LM, Yu QB, Wang T, Wang K, Qin Q, Qi ZF, Korean J. Chem. Eng., 35(3), 626 (2018)
Yaremchenko AA, Patrakeev MV, Kharton VV, Marques FMB, Leonidov IA, Kozhevnikov VL, Solid State Sci., 6(4), 357 (2004)