ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 4, 2021
Accepted August 24, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Composites derived from synthetic clay and carbon sphere: Preparation, characterization, and application for dye decontamination

1Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh, 700000, Vietnam 2Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh, 700000, Vietnam 3Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam 4Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam 5Department of Crop Science, College of Agriculture, Can Tho University, Can Tho, Vietnam 6Computational Optics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam 7Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Korean Journal of Chemical Engineering, April 2022, 39(4), 1053-1064(12), 10.1007/s11814-021-0940-z
downloadDownload PDF

Abstract

Two new composites from synthetic clay-like materials and carbon spheres were developed. Layered doubled hydroxides (LDH) were synthesized from the coprecipitation of Mg2+ and Al3+ ions. Spherical hydrochar (SH) was prepared from pure glucose through hydrothermal carbonization at 190℃. The composite LDH?SH was synthesized through a simple hydrothermal method of the mixture of LDH and SH. Another composite, LDO-SB, was directly prepared through the carbonization of LDH-SH at 500 ℃. Under such high temperature, LDH was converted to layered doubled oxides (LDO), and SH was transferred to spherical biochar (SB). Those materials were characterized by chemical stability, surface morphology and element composition, crystal structure, surface functional group, and textural characteristic. They were applied for removing cationic dye (methylene blue; MB) and anionic dye (Congo red; CR) under different pH solutions. Three adsorption components?kinetics, isotherm, and thermodynamics?were conducted under batch experimenters. Results demonstrated that the LDH or LDO particles were assembled on the surface of SH or SB, respectively. The surface area, total pore volume, and average pore width of LDH?SH and LDO-SB were 58.5 and 198m2/g, 0.319 and 0.440 cm3/g, and 21.8 and 8.89 nm, respectively. The maximum adsorption capacity of the materials, calculated from the Langmuir model, at 30℃ for CR and MB dyes was 1589 and 78.6mg/g (LDOSB) and 499 and 226mg/g (LDH-SH), respectively. The composites exhibited a higher affinity to anionic than cationic dyes, which resulted from the great contribution of the clay-like materials. Therefore, they can serve as a promising composite for the decolorization of wastewater.

References

Ihsanullah I, Chem. Eng. J., 388, 124340 (2020)
Tran HN, Nguyen DT, Le GT, Tomul F, Lima F, Woo SH, Sarmah AK, Nguyen HQ, Nguyen PT, Nguyen DD, Nguyen TV, Vigneswaran S, Vo DVN, Chao HP, J. Hazard. Mater., 373, 258 (2019)
Janani FZ, Taoufik N, Khiar H, Boumya W, Elhalil A, Sadiq M, Puga AV, Barka N, Sur. Interfaces, 25, 101263 (2021)
Galvão TLP, Neves CS, Caetano APF, Maia F, Mata D, Malheiro E, Ferreira MJ, Bastos AC, Salak AN, Gomes JRB, Tedim J, Ferreira MGS, J. Colloid Interface Sci., 468, 86 (2016)
Yang S, Wang L, Zhang X, Yang W, Song G, Chem. Eng. J., 275, 315 (2015)
Lei C, Zhu X, Zhu B, Jiang C, Le Y, Yu J, J. Hazard. Mater., 321, 801 (2017)
Huang W, Yu X, Li D, RSC Adv., 5, 84937 (2015)
Li J, Fan Q, Wu Y, Wang X, Chen C, Tang Z, Wang X, J. Mater. Chem. A, 4, 1737 (2016)
Kazeem TS, Zubair M, Daud M, Mu’azu ND, Al-Harthi MA, Korean J. Chem. Eng., 36, 1057 (2019)
Shan RS, Yan LG, Yang YM, Yang K, Yu SJ, Yu HQ, Zhu BC, Du B, J. Ind. Eng. Chem., 21, 561 (2015)
Wang Y, Du T, Zhou L, Song Y, Che S, Fang X, Korean J. Chem. Eng., 35, 709 (2018)
Yang F, Zhang S, Sun Y, Tsang DCW, Cheng K, Ok YS, J. Hazard. Mater., 365, 665 (2019)
Tran HN, Lin CC, Woo SH, Chao HP, Appl. Clay Sci., 154, 17 (2018)
Kowalik P, Konkol M, Kondracka M, Próchniak W, Bicki R, Wiercioch P, Appl. Catal. A: Gen., 464-465, 339 (2013)
dos Santos GEdS, Lins PVdS, Oliveira LMTdM, Silva EOd, Anastopoulos I, Erto A, Giannakoudakis DA, Almeida ARFd, Duarte JLdS, Meili L, J. Clean Prod., 284, 124755 (2021)
Gao Z, Sasaki K, Qiu X, Langmuir, 34, 5386 (2018)
Gennequin C, Barakat T, Tidahy, Cousin R, Lamonier JF, Aboukaïs A, Siffert S, Catal. Today, 157, 191 (2010)
Tran HN, Tomul F, Nguyen HTH, Nguyen DT, Lima EC, Le GT, Chang CT, Masindi V, Woo SH, J. Hazard. Mater., 394, 122255 (2020)
Huang FC, Lee CK, Han YL, Chao WC, Chao HP, J. Taiwan Inst. Chem. Eng., 45, 2805 (2014)
Tran HN, Wen YC, Wang YF, You SJ, Environ. Technol., 40, 1376 (2019)
Tran HN, Lee CK, Nguyen TV, Chao HP, Environ. Technol., 39, 2747 (2018)
Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP, Water Res., 120, 88 (2017)
Zhou Q, Xie C, Gong W, Xu N, Zhou W, J. Hazard. Mater., 198, 381 (2011)
Lagergren SK, Sven. Vetenskapsakad. Handingarl, 24, 1 (1898)
Blanchard G, Maunaye M, Martin G, Water Res., 18, 1501 (1984)
Putnis A, Kinetics of mineral processes, An Introduction to Mineral Sciences, Cambridge University Press, Cambridge (1992).
Lima EC, Dehghani MH, Guleria A, Sher F, Karri RR, Dotto GL, Tran HN, CHAPTER 3 - Adsorption: Fundamental aspects and applications of adsorption for effluent treatment, Green Technologies for the Defluoridation of Water, Elsevier (2021).
Koo B, Jung SP, Chem. Eng. J., 424, 130388 (2021)
Tran HN, You SJ, Chao HP, J. Environ. Manage., 188, 322 (2017)
Tran HN, Wang YF, You SJ, Chao HP, Process Saf. Environ. Protect., 107, 168 (2017)
Adesina AO, Elvis OA, Mohallem NDS, Olusegun SJ, Environ. Technol., 42, 1061 (2021)
Moreno-Castilla C, Carbon, 42, 83 (2004)
Chatterjee S, Lee MW, Woo SH, Bioresour. Technol., 101, 1800 (2010)
Kannan N, Meenakshisundaram M, Water Air Soil Pollut., 138, 289 (2002)
Wu Y, Luo H, Wang H, Sep. Sci. Technol., 49, 2700 (2014)
Sewu DD, Boakye P, Woo SH, Bioresour. Technol., 224, 206 (2017)
Ahmed IM, Gasser MS, Appl. Surf. Sci., 259, 650 (2012)
Chang R, Thoman JW Jr., Phys. Chem. Chemi. Sci., 779 (2014)
Tran HN, You SJ, Chao HP, Korean J. Chem. Eng., 34, 1708 (2017)
Paredes-Laverde M, Salamanca M, Diaz-Corrales JD, Flórez E, Silva-Agredo J, Torres-Palma RA, J. Environ. Chem. Eng., 9, 105685 (2021)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로