ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 5, 2021
Accepted November 29, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

New frontiers of quantum computing in chemical engineering

Cornell University, Ithaca, New York 14853, USA
Korean Journal of Chemical Engineering, April 2022, 39(4), 811-820(10), 10.1007/s11814-021-1027-6
downloadDownload PDF

Abstract

Quantum computing (QC) has the potential to strongly impact various sectors like finance, healthcare, communication, and technology by driving innovation across optimization and machine learning. Applications of QC in chemical, pharmaceutical, and biomolecular industries are also predicted to grow rapidly in the near future. Advancements in quantum hardware and algorithms have helped accelerate the widespread adoption of QC. Yet, despite the progress, several research gaps and challenges need to be addressed before leveraging QC for chemical engineering applications. Quantum computers offer higher computational power due to the exploitation of their quantum mechanical properties. However, not all computationally intractable problems can benefit from QC’s computational abilities. Achieving speedups over classical computing with quantum algorithms implemented on current quantum devices is possible for a few specific tasks. It is imperative to identify chemical engineering problems of practical relevance that may benefit from novel quantum techniques either with current quantum computers or of the future. Here, we present an introduction to basic concepts of QC while identifying the limitations of current quantum computers. A review of quantum algorithms that may benefit optimization and machine learning in chemical engineering with current quantum computers is also provided. This work also sets expectations for quantum devices of the future by exploring similar applications that may benefit from quantum algorithms implemented on such devices.

References

Nielsen MA, Chuang I, Quantum computation and quantum information, American Association of Physics Teachers (2002).
Friis N, Marty O, Maier C, Hempel C, Holzäpfel M, Jurcevic P, Plenio MB, Huber M, Roos C, Blatt R, Lanyon B, Phys. Rev. X, 8, 0121012 (2018)
Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA, Nature, 574, 505 (2019)
Montanaro A, npj Quantum Inf., 2, 15023 (2016)
Imre S, Balazs F, Quantum computing and communications: an engineering approach, John Wiley & Sons (2005).
Orús R, Mugel S, Lizaso E, Rev. Phys., 4, 100028 (2019)
Ying M, Artif. Intell., 174, 162 (2010)
Feynman RP, Feynman, Simulating physics with computers, CRC Press (2018).
Benioff P, J. Stat. Phys., 22, 563 (1980)
Gamble S, in Frontiers of engineering: Reports on leading-edge engineering from the 2018 symposium, National Academies Press (2019).
Raz R, Tal A, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019).
Fingerhuth M, Babej T, Wittek P, PloS One, 13, 0208561 (2018)
Garnier G, Front. Chem., 2, 17 (2014)
Biegler LT, Grossmann IE, Westerberg AW, Systematic methods for chemical process design, Prentice Hall, Old Tappan, NJ (1997).
Dutta S, Optimization in chemical engineering, Cambridge University Press (2016).
Venkatasubramanian V, AIChE J., 65, 466 (2019)
Shang C, You F, Engineering, 5, 1010 (2019)
Preskill J, Quantum, 2, 79 (2018)
McArdle S, Endo S, Aspuru-Guzik A, Benjamin SC, Yuan X, Rev. Mod. Phys., 92, 015003 (2020)
Tran TT, Do M, Rieffel EG, Frank J, Wang Z, O'Gorman B, Venturelli D, Beck JC, in Ninth annual symposium on combinatorial search (2016).
Harwood S, Gambella C, Trenev D, Simonetto A, Bernal D, Greenberg D, IEEE Trans. Quantum Eng., 2, 1 (2021)
Ajagekar A, Humble T, You F, Comput. Chem. Eng., 132, 106630 (2020)
Omer B, Master’s thesis, Institute of Information Systems Technical University of Vienn na (2000).
Britt KA, Humble TS, ACM J. Emerging Technol. Comput. Syst., 13, 1 (2017)
Deutsch DE, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 425, 73 (1989)
Adedoyin A, Ambrosiano J, Anisimov P, Bärtschi A, Casper W, Chennupati G, Coffrin C, Djidjev H, Gunter D, Karra S, arXiv preprint arXiv:1804.03719 (2018).
McGeoch CC, Synthesis Lectures on Quantum Computing, 5, 1 (2014)
Griffiths DJ, Schroeter DF, Introduction to quantum mechanics, Cambridge University Press (2018).
Albash T, Lidar DA, Rev. Mod. Phys., 90, 015002 (2018)
Farhi E, Goldstone J, Gutmann S, Sipser M, arXiv preprint quant-ph/0001106 (2000).
Aharonov D, Van Dam W, Kempe J, Landau Z, Lloyd S, Regev O, SIAM Rev., 50, 755 (2008)
Kadowaki T, Nishimori H, Phys. Rev. E, 58, 5355 (1998)
“Final Report: Emerging Technologies Subcommittee Quantum Information Science”, Homeland Security Advisory Council.
Bacon DM, Decoherence, control, and symmetry in quantum computers, University of California, Berkeley (2001).
Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, Phys. Rev. Lett., 125, 240503 (2020)
Pearson A, Mishra A, Hen I, Lidar DA, npj Quantum Inf., 5, 1 (2019)
Gottesman D, arXiv preprint arXiv:0904.2557 (2009).
Pudenz KL, Albash T, Lidar DA, Nat. Commun., 5, 3243 (2014)
Cross AW, Bishop LS, Sheldon S, Nation PD, Gambetta JM, Phys. Rev., A, 100, 032328 (2019)
Gottesman D, Phys. Rev., A, 57, 127 (1998)
Boixo S, Isakov SV, Smelyanskiy VN, Babbush R, Ding N, Jiang Z, Bremner MJ, Martinis JM, Neven H, Nat. Phys., 14, 595 (2018)
Biegler LT, Grossmann IE, Comput. Chem. Eng., 28, 1169 (2004)
Kelner JA, Spielman DA, in Proceedings of the thirty-eighth annual ACM symposium on Theory of computing (2006).
Grossmann IE, Westerberg AW, AIChE J., 46, 1700 (2000)
Furman KC, Sahinidis NV, Comput. Chem. Eng., 25, 1371 (2001)
Grossmann IE, Biegler LT, Comput. Chem. Eng., 28, 1193 (2004)
Bernstein E, Vazirani U, SIAM J. Comput., 26, 1411 (1997)
Rao SS, Engineering optimization: Theory and practice, John Wiley & Sons (2019).
Aaronson S, SIGACT News, 36, 30 (2005)
Parr RG, Density functional theory of atoms and molecules, in Horizons of quantum chemistry, Springer (1980).
Helgaker T, Klopper W, Tew DP, Mol. Phys., 106, 2107 (2008)
Cao Y, Romero J, Olson JP, Degroote M, Johnson PD, Kieferová M, Kivlichan ID, Menke T, Peropadre B, Sawaya NP, Chem. Rev., 119, 10856 (2019)
Peruzzo A, McClean J, Shadbolt P, Yung MH, Zhou XQ, Love PJ, Aspuru-Guzik A, O’brien JL, Nat. Commun., 5, 1 (2014)
Bauer B, Bravyi S, Motta M, Chan GKL, Chem. Rev., 120, 12685 (2020)
Andersson MP, Jones MN, Mikkelsen KV, You F, Mansouri SS, Curr. Opin. Chem. Eng., 36, 100754 (2022)
Alidaee B, Kochenberger GA, Ahmadian A, Int. J. Syst. Sci., 25, 401 (1994)
Krarup J, Pruzan PM, Computer-aided layout design, in Mathematical programming in use, Springer (1978).
Kochenberger G, Hao JK, Glover F, Lewis M, Lü Z, Wang H, Wang Y, J. Comb. Optim., 28, 58 (2014)
Ajagekar A, You F, Energy, 179, 76 (2019)
Lucas A, Front. Phys., 2, 5 (2014)
Farhi E, Goldstone J, Gutmann S, arXiv preprint arXiv:1411. 4028 (2014).
Guerreschi GG, Matsuura AY, Sci. Rep., 9, 1 (2019)
Patton R, Schuman C, Potok T, Quantum Inf. Process., 18 (2019)
Li J, Rhinehart RR, Comput. Chem. Eng., 22, 427 (1998)
Lee JH, Shin J, Realff MJ, Comput. Chem. Eng., 114, 111 (2018)
Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S, Nature, 549, 195 (2017)
Aïmeur E, Brassard G, Gambs S, Machine learning in a quantum world. In conference of the canadian society for computational studies of intelligence, Springer, Berlin, Heidelberg (2006).
Farhi E, Neven H, arXiv preprint arXiv:1802.06002 (2018).
Wiebe N, Kapoor A, Svore K, arXiv preprint arXiv:1401.2142 (2014).
Schuld M, Sweke R, Meyer JJ, Phys. Rev., A, 103, 032430 (2021)
Chiang L, Lu B, Castillo I, Annu. Rev. Chem. Biomol. Eng., 8, 63 (2017)
Cong I, Choi S, Lukin MD, Nat. Phys., 15, 1273 (2019)
Ajagekar A, You F, Comput. Chem. Eng., 143, 107119 (2020)
Harrow AW, Hassidim A, Lloyd S, Phys. Rev. Lett., 103, 150502 (2009)
Schuld M, Sinayskiy I, Petruccione F, Phys. Rev., A, 94, 022342 (2016)
Liu Y, Zhang S, Theor. Comput. Sci., 657, 38 (2017)
Aaronson S, Nat. Phys., 11, 291 (2015)
Bravo-Prieto C, LaRose R, Cerezo M, Subasi Y, Cincio L, Coles P, Bull. Am. Phys. Soc., 65 (2020)
Chang CC, Gambhir A, Humble TS, Sota S, Sci. Rep., 9, 1 (2019)
Li RY, Di Felice R, Rohs R, Lidar DA, npj Quantum Inf., 4, 14 (2018)
Lloyd S, Weedbrook C, Phys. Rev. Lett., 121, 040502 (2018)
Amin MH, Andriyash E, Rolfe J, Kulchytskyy B, Melko R, Phys. Rev. X, 8, 015002 (2018)
Zoufal C, Lucchi A, Woerner S, Quantum Mach. Intell., 3, 7 (2021)
Ajagekar A, You F, Appl. Energy, 303, 117628 (2021)
Chen SYC, Yang CHH, Qi J, Chen PY, Ma X, Goan HS, IEEE Access, 8, 141007 (2020)
Preskill J, Fault-tolerant quantum computation, in Introduction to quantum computation and information, World Scientific (1998).
Campbell ET, Terhal BM, Vuillot C, Nature, 549, 172 (2017)
Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Boixo S, Broughton M, Buckley BB, Buell DA, Science, 369, 1084 (2020)
Zhou L, Wang ST, Choi S, Pichler H, Lukin MD, Phys. Rev. X, 10, 021067 (2020)
Brandao FG, Svore KM, in Annual Symposium on Foundations of Computer Science (FOCS), IEEE (2017).
van Apeldoorn J, Gilyén A, arXiv preprint arXiv:1804.05058 (2018).
Grover LK, in Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing, Association for Computing Machinery, Philadelphia, Pennsylvania, USA (1996).
Lloyd S, Mohseni M, Rebentrost P, arXiv preprint arXiv: 1307.0411 (2013).
Wiebe N, Braun D, Lloyd S, Phys. Rev. Lett., 109, 050505 (2012)
Rebentrost P, Mohseni M, Lloyd S, Phys. Rev. Lett., 113, 130503 (2014)
Zhao Z, Fitzsimons JK, Fitzsimons JF, Phys. Rev., A, 99, 052331 (2019)
Lloyd S, Mohseni M, Rebentrost P, Nat. Phys., 10, 631 (2014)
Dong D, Chen C, Li H, Tarn T, IEEE Trans. Syst. Man Cybern. Part B Cybern., 38, 1207 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로