ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 5, 2021
Accepted October 13, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Applications and mechanisms of free and immobilized laccase in detoxification of phenolic compounds - A review

1Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada 2Department of Chemistry, Faculty of Science, University of Kurdistan, 66177-15175, Sanandaj, Iran 3Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada
amira.abdelrasoul@usask.ca
Korean Journal of Chemical Engineering, April 2022, 39(4), 821-832(12), 10.1007/s11814-021-0984-0
downloadDownload PDF

Abstract

Phenolic compounds are present in different concentrations in the effluent from numerous industrial and agricultural activities. These compounds are harmful to living organisms due to their high toxicity, hence indicating a serious environmental concern. Although conventional methods such as chemical, physical, and physicochemical procedures have been widely used for treating phenol-contaminated wastewaters, they are not useful owing to some shortcomings. Compared to conventional procedures, much attention has been recently devoted to enzymatic methods because of high catalytic efficiency, mild operating conditions and environmentally friendly feature. Among various enzymes, laccases have demonstrated a superior potential for removing phenolic contaminants. Thus, this review summarizes the up-to-date literature on the use of free and immobilized laccases from different microbial source in the degradation and remediation of phenolic pollutants in batch processes and continuous reactors. In general, examples through the review approve that free laccases as well as immobilized laccases onto inorganic, organic (natural or synthetic) and hybrid supports show excellent performance in the remediation of phenolic compounds from wastewater. In contrast to immobilized laccases, free laccases suffer from high prices, low operative stability, and inability to recover and reuse in their native forms. Moreover, the possible mechanisms associated with oxidation of phenolic compounds by the laccase-catalyzed systems are assessed.

References

Hollmann F, Arenda IWCE, Polymer, 4, 759 (2012)
Annadurai G, Babu SR, Mahesh KPO, Murugesan T, Bioprocess Eng., 22, 493 (2000)
Bharagava RN, Chandra R, Biodegradation J., 21, 703 (2010)
Gianfreda L, Iamarino G, Scelza R, Rao MA, Biocatal. Biotransformation, 24, 177 (2006)
Saxena G, Bharagava RN, Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, CRC Press, Taylor & Francis Group (2017).
Poi G, Aburto-Medina A, Mok PC, Ball AS, Shahsavari E, Water Air Soil Pollut., 228, 89 (2017)
Singh N, Balomajumder CJ, Water Process Eng., 9, 233 (2016)
Husain Q, Crit. Rev. Biotechnol., 26, 201 (2006)
Güy N, Atacan K, Yıldırım I, Özacar M, J. Mol. Liq., 326, 115311 (2021)
Atacan K, Güy N, Özacar M, Colloids Interface Sci. Commun., 40, 100359 (2021)
Gai H, Wang H, Liu L, Feng B, Xiao M, Tang Y, Qu X, Song H, Huang T, Chem. Phys. Lett., 767, 138367 (2021)
Zhang J, Xie M, ZhaoLing H, Guangfeng Z, Zhao W, Chemosphere, 269, 29404 (2021)
Kumar S, Kaushik RD, Purohit LP, J. Mol. Liq., 327, 114814 (2021)
Jun LY, Yon LS, Mubaraka NM, Bing CH, Pan S, Danquah MK, Abdullah EC, Khalid M, J. Environ. Chem. Eng., 7, 102961 (2019)
Güy N, Atacan K, Boutra B, Özacar M, Water Sci Technol., 82, 1912 (2020)
Sellami K, Nasrallah N, Maachi R, Tandjaoui N, Abouseoud M, Amrane A, J. Hazard. Mater., 403, 124021 (2021)
Said KAM, FauziIsmail A, Karim ZA, Abdullah MS, Hafeez A, Process Saf. Environ. Protect., 151, 257 (2021)
Deng S, Jothinathan L, Cai Q, RuiLi, Wu M, Leong-Ong S, Hu J, Water Res., 190, 116687 (2021)
Tian H, Xu X, Qu J, Li H, Hu Y, Huang L, He W, Li B, J. Hazard. Mater., 392, 122463 (2020)
Alshabib M, Onaizi SA, Sep. Purif. Technol., 219, 186 (2019)
Rahmani H, Lakzian A, Karimi A, Halajnia A, J. Environ. Manage., 256, 109740 (2020)
Chowdhary P, Saxena G, Bharagava RN, Role of laccase enzyme in bioremediation of industrial wastes and its biotechnological application, Write & Print Publications, New Delhi (2016).
Husain Q, Husain M, Kulshrestha Y, Crit. Rev. Biotechnol., 29, 94 (2009)
Pravin MD, Chris FS, Gnanamani A, RSC Adv., 8, 38416 (2018)
Wu Q, Xu Z, Duan Y, Zhu Y, Ou M, Xu X, RSC Adv., 7, 28114 (2017)
Yao CL, Lin CC, Chu IM, Lai YT, Appl. Biochem. Biotechnol., 191, 45 (2020)
Xu H, Guo MY, Gao YH, Bai XH, Zhou XW, BMC Biotechnol., 17, 19 (2017)
Ward G, Hadar Y, Dosoretz GC, J. Chem. Technol. Biotechnol., 78, 1239 (2003)
Ba S, Kumar VV, Crit. Rev. Biotechnol., 37, 819 (2017)
Bilal M, Rasheed T, Nabeel F, Iqbal HMN, Zhao Y, J. Environ. Manage., 234, 253 (2019)
Bilal M, Iqbal HMN, Barceló D, Sci. Total Environ., 689, 160 (2019)
Liu YY, Zeng ZT, Zeng GM, Tang L, Pang Y, Li Z, Liu C, Lei X, Wu MS, Ren PY, Liu ZF, Chen M, Xie GX, Bioresour. Technol., 115, 21 (2012)
Mohammadi SZ, Darijani Z, Karimi MA, J. Alloy. Compd., 832, 154942 (2020)
Chakroun H, Mechichi T, Martinez MJ, Dhouib A, Sayadi S, Process Biochem., 45, 507 (2010)
Yoshida H, J. Chem. Soc. (Japan), 43, 472 (1883)
Mogharabi M, Faramarzi MA, Adv. Synth. Catal., 56, 897 (2014)
Abdel-Mohsen HT, Conrad J, Beifuss U, Green Chem., 16, 90 (2014)
Asta C, Conrad J, Mika S, Beifuss U, Green Chem., 13, 3066 (2011)
Saadati S, Ghorashi N, Rostami A, Kobarfard F, Eur. J. Org. Chem., 450 (2018)
Rostami A, Mohammadi B, Shokri Z, Saadati S, Catal. Commun., 111, 59
Khaledian D, Rostami A, Zarei SA, Catal. Commun., 114, 75 (2018)
Shariati M, Rostami A, Imanzadeh G, Kheirjou S, Mol. Catal., 461, 48 (2018)
Ghorashi N, Shokri Z, Moradi R, Abdelrasoul A, Rostami A, RSC Adv., 10, 14254 (2020)
Moradi S, Shokri Z, Ghorashi N, Navaee A, Rostami A, J. Catal., 382, 305 (2020)
Witayakran S, Ragauskas AJ, Adv. Synth. Catal., 351, 1187 (2009)
Su J, Fu J, Wang Q, Silva C, Cavaco-Paulo A, Crit Rev. Biotechnol., 38, 294 (2018)
Catherine H, Frédéric D, Penninckx M, Environ. Technol. Innov., 5, 250 (2016)
Marjasvaara A, Torvinen M, Kinnunen H, Vainiotalo P, Biomacromolecules, 7, 1604 (2006)
Tušek AJ, Tišma M, Bregovi V, Pticar A, Kurtanjek Z, Zelić B, Biotechnol. Bioprocess Eng., 18, 686 (2013)
Sun X, Bai R, Zhang Y, Wang Q, Fan X, Yuan J, Cui L, Wang P, Appl. Biochem. Biotechnol., 171, 1673 (2013)
Asadgol Z, Forootanfar H, Rezaei S, Mahvi AH, Faramarzi MA, J. Environ. Health Sci., 12, 93 (2014)
Llevot A, Grau E, Carlotti S, Grelier S, Cramail H, J. Mol. Catal. B-Enzym., 125, 34 (2016)
Bettin F, Cousseau F, Martins K, Boff NA, Zaccaria S, Silveira MMD, Dillon AJP, J. Environ. Manage., 236, 581 (2019)
Carolina M, Gonçalves P, Guenter T, Firmani R, Tomiê J, Andres S, Morales V, Paulo J, Process Biochem., 76, 95 (2019)
Eş I, Gonçalves-Vieira JD, Amaral AC, Appl. Microbiol. Biotechnol., 99, 2065 (2015)
Hartmann M, Kostrov X, Chem. Soc. Rev., 42, 6277 (2013)
Mohamad NR, Che-Marzuki NH, Buang NA, Huyop F, Biotechnol. Biotechnol. Equip., 29, 205 (2015)
DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G, Chem. Soc. Rev., 42, 6437 (2013)
Mohammadi M, Ashabi MA, Salehi P, Yousefi M, Nazari M, Brask J, Int. J. Biol. Macromol.
Atacan K, Güy N, Cakar S, Özacar M, J. Photochem. Photobiol. A-Chem., 382, 11935 (2019)
Atacan K, Çakıroğlu B, Özacar M, Colloids Surf. B: Biointerfaces, 156, 9 (2017)
Atacan K, Çakıroğlu B, Özacar M, Int. J. Biol. Macromol., 97, 148 (2017)
Atacan K, Özacar M, Colloids Surf. B: Biointerfaces, 128, 227 (2015)
Sheldon RA, Adv. Synth. Catal., 349, 1289 (2007)
Zdarta J, Meyer AS, Pinelo M, Adv. Colloid Interface Sci., 258, 1 (2018)
Salis A, Pisano M, Monduzzi M, Solinas V, Sanjust E, J. Mol. Catal. B-Enzym., 58, 175 (2009)
Galliker P, Hommes G, Schlosser D, Corvini PFX, Shahgaldian P, J. Colloid Interface Sci., 349, 98 (2010)
Hu J, Yuan B, Zhang Y, Guo M, RSC Adv., 5, 99439 (2015)
Moreira MT, Moldes-Diz Y, Feijoo S, Eibes G, Lema JM, Feijoo G, Appl. Sci., 7, 851 (2017)
Fathali Z, Rezaei S, Faramarzi MA, Habibi-Rezaei M, Int. J. Biol. Macromol., 122, 359 (2019)
Aydemir T, Güler S, Artif. Cells Nanomed. Biotechnol., 43, 425 (2015)
Alver E, Metin A, Biodegradation, 125, 235 (2017)
Tarasi R, Alipour M, Gorgannezhad L, Imanparast S, Yousefi-Ahmadipour A, Ramezani A, Ganjali MR, Shafiee A, Faramarzi MA, Khoobi M, Macromol. Res., 26, 755 (2018)
Bayramoğlu G, Arıca MY, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 29, 1990 (2009)
Stanescu MD, Gavrilas S, Ludwig R, Haltrich D, Lozinsky VI, Eur. Food Res. Technol., 234, 655 (2012)
Doğan T, Bayram E, Uzun L, Şenel S, Denizli A, J. Appl. Polym. Sci., 132, 41981 (2015)
Qiu X, Wang Y, Xue Y, Li W, Hu Y, Chem. Eng. J., 391, 123564 (2020)
Wu E, Li Y, Huang Q, Yang Z, Wei A, Hu Q, Chemosphere, 233, 327 (2019)
Pang R, Li M, Zhang C, Talanta, 131, 38 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로