ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 26, 2021
Accepted February 9, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Flow analysis and development of a model to simulate transient temperature of hydrogen from pre-cooler to on-board storage tank during hydrogen refueling

Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungcheongbuk-do 27469, Korea 1Korea Gas Safety Corporation, 1390 Wonjung-ro, Maengdong-myeon, Eumseong-gun, Chungcheongbuk-do 27738, Korea
b.h.park@ut.ac.kr
Korean Journal of Chemical Engineering, April 2022, 39(4), 902-912(11), 10.1007/s11814-022-1085-4
downloadDownload PDF

Abstract

Hydrogen energy is expected to play an important role in energy transition policies. Currently, the utilization of hydrogen energy is mainly in the field of mobility associated with fuel cell electric vehicles (FCEVs). To increase the utilization of FCEVs, it is essential to develop a method for safely refueling hydrogen into on-board storage tanks which have a temperature limitation. Therefore, it is necessary to understand the flow and heat transfer characteristics of hydrogen to keep the temperature lower than the limitation. In this study, a model for predicting the temperature of hydrogen at the pipeline outlet was developed based on flow characteristics analysis. It is revealed that the flow in a pipeline can be considered as incompressible and that the turbulence model can be applied with respect to pressure, temperature, and pipeline diameter. The proposed model is based on energy balances of the pipeline and the flowing hydrogen. Analogous methods are compared to obtain heat transfer coefficient required for thermal analysis. Although there is a difference in the heat transfer coefficient with respect to the analogous methods, little difference is found in the hydrogen temperature. Additionally, it is found that the equivalent length can be used to account for the thermal mass of the pipeline and the experimental results can be accurately simulated using a relatively large external heat transfer coefficient.

References

Li Y, Kimura S, Energy Policy, 148, 111980 (2021)
Stangarone T, Clean Technol. Environ. Policy, 23, 509 (2021)
SAE Engineers, Fueling protocols for light duty gaseous hydrogen surface vehicles, SAE International (2020).
Cunanan C, Tran MK, Lee Y, Kwok S, Leung V, Fowler M, Clean Technol., 3, 474 (2021)
SAE Engineers, Fueling protocol for gaseous hydrogen powered heavy duty vehicles, SAE International (2014).
Xu G, Pareek K, Li N, Cheng H, Int. J. Hydrog. Energy, 40, 16330 (2015)
Pareek K, Rohan R, Chen Z, Zhao D, Cheng H, Int. J. Hydrog. Energy, 42, 6801 (2017)
Hua T, Ahluwalia R, Peng JK, Kromer M, Lasher S, McKenney K, Law K, Sinha J, Int. J. Hydrog. Energy, 36, 3037 (2011)
Ahluwalia RK, Hua T, Peng J, Int. J. Hydrog. Energy, 37, 2891 (2012)
He C, Yu R, Sun H, Chen Z, Int. J. Hydrog. Energy, 41, 15812 (2016)
Li M, Bai Y, Zhang C, Song Y, Jiang S, Grouset D, Zhang M, Int. J. Hydrog. Energy, 44, 10677 (2019)
Maus S, Hapke J, Ranong CN, Wüchner E, Friedlmeier G, Wenger D, Int. J. Hydrog. Energy, 33, 4612 (2008)
Cebolla RO, Acosta B, Moretto P, De Miguel N, Int. J. Hydrog. Energy, 44, 8601 (2019)
Cebolla RO, Acosta B, Moretto P, Frischauf N, Harskamp F, Bonato C, Baraldi D, Int. J. Hydrog. Energy, 39, 6261 (2014)
Acosta B, Moretto P, de Miguel N, Ortiz R, Harskamp F, Bonato C, Int. J. Hydrog. Energy, 39, 20531 (2014)
Bourgeois T, Ammouri F, Weber M, Knapik C, Int. J. Hydrog. Energy, 40, 11748 (2015)
Dicken CJB, Merida W, Numer. Heat Transf. A-Appl., 53, 685 (2007)
Zhao L, Liu Y, Yang J, Zhao Y, Zheng J, Bie H, Liu X, Int. J. Hydrog. Energy, 35, 8092 (2010)
Kim SC, Lee SH, Yoon KB, Int. J. Hydrog. Energy, 35, 6830 (2010)
Simonovski I, Baraldi D, Melideo D, Acosta-Iborra B, Int. J. Hydrog. Energy, 40, 12560 (2015)
Zhang J, Fisher TS, Ramachandran PV, Gore JP, Mudawar I, J. Heat Transf. -Trans. ASME, 127, 1391 (2005)
Yang JC, Int. J. Hydrog. Energy, 34, 6712 (2009)
Ranong CN, Maus S, Hapke J, Fieg G, Wenger D, Heat Transf. Eng., 32, 127 (2011)
Olmos F, Manousiouthakis VI, Int. J. Hydrog. Energy, 38, 3401 (2013)
Ruffio E, Saury D, Petit D, Int. J. Hydrog. Energy, 39, 12701 (2014)
Woodfield PL, Monde M, Mitsutake Y, J. Therm. Sci. Technol., 2, 180 (2007)
Woodfield PL, Monde M, Takano T, J. Therm. Sci. Technol., 3, 241 (2008)
Heath M, Woodfield PL, Hall W, Monde M, Exp. Therm. Fluid Sci., 54, 151 (2014)
Kuroki T, Sakoda N, Shinzato K, Monde M, Takata Y, Int. J. Hydrog. Energy, 43, 1846 (2018)
Xiao J, Bénard P, Chahine R, Int. J. Hydrog. Energy, 41, 5531 (2016)
Xiao J, Wang X, Zhou X, Bénard P, Chahine R, Int. J. Hydrog. Energy, 44, 8780 (2019)
Deng S, Xiao J, Bénard P, Chahine R, Int. J. Hydrog. Energy, 45, 20525 (2020)
Liu J, Zheng S, Zhang Z, Zheng J, Zhao Y, Int. J. Hydrog. Energy, 45, 9241 (2020)
Caponi R, Ferrario AM, Bocci E, Valenti G, Pietra MD, Int. J. Hydrog. Energy, 46, 18630 (2021)
Reddi K, Elgowainy A, Sutherland E, Int. J. Hydrog. Energy, 39, 19169 (2014)
Viktorsson L, Heinonen JT, Skulason JB, Unnthorsson R, Energies, 10, 763 (2017)
Mayyas A, Mann M, Int. J. Hydrog. Energy, 44, 9121 (2019)
Valderrama JO, Ind. Eng. Chem. Res., 42, 1603 (2003)
Sakoda N, Shindo K, Shinzato K, Kohno M, Takata Y, Fujii M, Int. J. Thermophys., 31, 276 (2010)
Nasrifar K, Int. J. Hydrog. Energy, 35, 3802 (2010)
Galassi MC, Baraldi D, Iborra BA, Moretto P, Int. J. Hydrog. Energy, 37, 6886 (2012)
Melideo D, Baraldi D, Int. J. Hydrog. Energy, 40, 735 (2015)
Melideo D, Baraldi D, Acosta-Iborra B, Cebolla RO, Moretto P, Int. J. Hydrog. Energy, 42, 7304 (2017)
Sapre S, Pareek K, Rohan R, Singh PK, Energy Storage, 1, e91 (2019)
Park BH, Trans. Korean Hydrogen New Energy Soc., 31, 184 (2020)
Linstrom PJ, Mallard WG, J. Chem. Eng. Data, 46, 1059 (2001)
Poling BE, Prausnitz JM, O'connell JP, The properties of gases and liquids, McGraw-Hill, New York (2001).
Ma X, Tang X, Wang Z, Wang Q, Gao D, Sci. Rep., 10, 1 (2020)
Elgowainy A, Reddi K, Sutherland E, Joseck F, Int. J. Hydrog. Energy, 39, 20197 (2014)
Klinzing GE, Rizk F, Marcus R, Leung L, Pneumatic conveying of solids: A theoretical and practical approach, Springer Science & Business Media (2011).
Dittus FW, Univ. Calif. Pubs. Eng., 2, 443 (1930)
Karman TV, Trans. Soc. Mech. Eng., 61, 705 (1939)
Colburn AP, Trans. Am. Inst. Chem. Eng., 29, 174 (1993)
Moroe S, Woodfield P, Kimura K, Kohno M, Fukai J, Fujii M, Shinzato K, Takata Y, Int. J. Thermophys., 32, 1887 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로