ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 2, 2021
Accepted October 31, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The effect of Zn doping on active Cu species and its location of Cu-exchanged mordenite for the stepwise oxidation of methane to methanol

1Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand 73000 2Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand 73000 3Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand 10310 4Center of Excellence on Catalysis and Catalytic Reaction Engineering, Chulalongkorn University, Bangkok, Thailand 10330
chotigkrai_n@silpakorn.edu
Korean Journal of Chemical Engineering, April 2022, 39(4), 920-927(8), 10.1007/s11814-021-1001-3
downloadDownload PDF

Abstract

The effect of Zn doping (0.5-3wt%) on Cu-exchanged mordenite (Cu-MOR) was investigated during the stepwise oxidation of methane to methanol. The strong interaction between Cu and ZnOx stabilized the highly-dispersed state of Cu2+ but reduced the Cu2+ bounded to extra-framework oxygen (active site), as demonstrated by the H2- TPR and XPS results. The Cu/Al and Zn/Al ratios suggested that Zn preferably bonded to the sites in the 8-MR channel, which led to highly dispersed Cu2+ anchored onto the highly accessible sites (12-MR and 8-MR side pocket). The reactivity indicated that highly dispersed Cu2+ can be gradually transformed into active Cu2+ species during contact with methane. Bimetallic Cu-ZnOx was also able to activate methane, resulting in a product complex. Although Zndoped Cu-MOR catalysts gave a lower methanol yield at 2 h, a higher methanol yield could be achieved at saturation methane loading time. Interestingly, 3 wt% Zn doping on Cu-MOR showed superior activity due to the increase of methanol yield up to 20% at 5 h of methane loading time. This work paves the way for the design of highly dispersed Cu2+ in the 12-MR channel of mordenite zeolite via the control of strong Cu-ZnOx interaction.

References

Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA, Science, 356, 523 (2017)
Elvidge C, Zhizhin M, Baugh K, Hsu FC, Ghosh T, Energies, 9, 14 (2015)
Lee SH, Kang JK, Park ED, Korean J. Chem. Eng., 35, 2145 (2018)
Tang P, Zhu Q, Wu Z, Ma D, Energy Environ. Sci., 7, 2580 (2014)
Ren M, Shi Q, Mi L, Liang W, Yuan M, Wang L, Gao Z, Huang W, Huang J, Zuo Z, Mater. Today Sustain., 11-12, 100061 (2021)
Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC, Nature, 465, 115 (2010)
Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Müller J, Lippard SJ, Angew. Chem.-Int. Edit., 40, 2782 (2001)
Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA, J. Am. Chem. Soc., 127, 1394 (2005)
Alayon EM, Nachtegaal M, Ranocchiari M, Van Bokhoven JA, Chem. Commun., 48, 404 (2012)
Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y, ACS Cent. Sci., 2, 424 (2016)
Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA, Hensen EJM, Jentys A, Sanchez-Sanchez M, Lercher JA, Nat. Commun., 6, 1 (2015)
Arvaneh R, Fard AA, Bazyari A, Alavi SM, Abnavi FJ, Korean J. Chem. Eng., 36, 1033 (2019)
Chotigkrai N, Hochin Y, Panpranot J, Praserthdam P, React. Kinet. Mech. Catal., 117, 565 (2016)
Tomkins P, Mansouri A, Sushkevich VL, Van der Wal LI, Bozbag SE, Krumeich F, Ranocchiari M, Van Bokhoven JA, Chem. Sci., 10, 167 (2019)
Geng H, Yang Z, Zhang L, Ran J, Yan Y, Energy Conv. Manag., 132, 339 (2017)
Zhao Y, Shan B, Wang Y, Zhou J, Wang S, Ma X, Ind. Eng. Chem. Res., 57, 4526 (2018)
Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Science, 336, 893 (2012)
Qi W, Ling Q, Ding D, Yazhong C, Chengwu S, Peng C, Ye W, Qinghong Z, Rong L, Hao S, Catal. Commun., 108, 68 (2018)
Reule AAC, Semagina N, ACS Catal., 6, 4972 (2016)
Gabrienko AA, Arzumanov SS, Luzgin MV, Stepanov AG, Parmon VN, J. Phys. Chem. C, 119, 24910 (2015)
Le HV, Parishan S, Sagaltchik A, Göbel C, Schlesiger C, Malzer W, Trunschke A, Schomäcker R, Thomas A, ACS Catal., 7, 1403 (2017)
Zhou T, Li L, Jie C, Shen Q, Xie Q, Hao Z, Ceram. Int., 35, 3097 (2009)
Zhang D, Zhang H, Yan Y, Microporous Mesoporous Mater., 243, 193 (2017)
Gong T, Qin L, Lu J, Feng H, Phys. Chem. Chem. Phys., 18, 601 (2016)
Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y, ACS Cent. Sci., 2, 424 (2016)
Tamiyakul S, Ubolcharoen W, Tungasmita DN, Jongpatiwut S, Catal. Today, 256, 325 (2015)
Reule AAC, Shen J, Semagina N, ChemPhysChem, 19, 1500 (2018)
Sainz-Vidal A, Balmaseda J, Lartundo-Rojas L, Reguera E, Microporous Mesoporous Mater., 185, 113 (2014)
Vanelderen P, Vancauwenbergh J, Tsai ML, Hadt RG, Solomon EI, Schoonheydt RA, Sels BF, ChemPhysChem, 15, 91 (2014)
Reule AAC, Prasad V, Semagina N, Microporous Mesoporous Mater., 263, 220 (2018)
Fu Z, Yin D, Yang Y, Guo X, Appl. Catal. A: Gen., 124, 59 (1995)
Popov AG, Smirnov AV, Knyazeva EE, Yuschenko VV, Kalistratova EA, Klementiev KV, Grünert W, Ivanova II, Microporous Mesoporous Mater., 134, 124 (2010)
Lunkenbein T, Schumann J, Behrens M, Schlögl R, Willinger MG, Angew. Chem.-Int. Edit., 54, 4544 (2015)
Dalebout R, Visser NL, Pompe CEL, de Jong KP, de Jongh PE, J. Catal., 392, 150 (2020)
Liu Q, Zhao Z, Arai M, Zhang C, Liu K, Shi R, Wu P, Wang Z, Lin W, Cheng H, Zhao F, Catal. Sci. Technol., 10, 4412 (2020)
Artiglia L, Sushkevich VL, Palagin D, Knorpp AJ, Roy K, Van Bokhoven JA, ACS Catal., 9, 6728 (2019)
Niu X, Gao J, Miao Q, Dong M, Wang G, Fan W, Qin Z, Wang J, Microporous Mesoporous Mater., 197, 252 (2014)
Gabrienko AA, Arzumanov SS, Toktarev AV, Danilova IG, Prosvirin IP, Kriventsov VV, Zaikovskii VI, Freude D, Stepanov AG, ACS Catal., 7, 1818 (2017)
Newton MA, Knorpp AJ, Sushkevich VL, Palagin D, Van Bokhoven JA, Chem. Soc. Rev., 49, 1449 (2020)
Kulkarni AR, Zhao ZJ, Siahrostami S, Nørskov JK, Studt F, ACS Catal., 6, 6531 (2016)
Pappas DK, Martini A, Dyballa M, Kvande K, Teketel S, Lomachenko KA, Baran R, Glatzel P, Arstad B, Berlier G, J. Am. Chem. Soc., 140, 15270 (2018)
Ikuno T, Grundner S, Jentys A, Li G, Pidko E, Fulton J, Sanchez-Sanchez M, Lercher JA, J. Phys. Chem. C, 123, 8759 (2019)
Lomachenko KA, Martini A, Pappas DK, Negri C, Dyballa M, Berlier G, Bordiga S, Lamberti C, Olsbye U, Svelle S, Beato P, Catal. Today, 336, 99 (2019)
Alayon EMC, Nachtegaal M, Bodi A, Ranocchiari M, Van Bokhoven JA, Phys. Chem. Chem. Phys., 17, 7681 (2015)
Meyet J, Ashuiev A, Noh G, Newton MA, Klose D, Searles K, van Bavel AP, Horton AD, Jeschke G, van Bokhoven JA, Angew. Chem.-Int. Edit., 60, 16200 (2021)
Wang G, Huang L, Chen W, Zhou J, Zheng A, Phys. Chem. Chem. Phys., 20, 26522 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로