ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 4, 2021
Accepted October 31, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Melamine sponge-based copper-organic framework (Cu-CPP) as a multi-functional filter for air purifiers

1Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon 24252, Korea 2Nano-InnoTek Corporation, 123, Digital-ro 26-gil, Guro-gu, Seoul 08390, Korea 3Tra Vinh University, 126, Nguyen Thien Thanh Street, Tra Vinh City 87000, Tra Vinh Province, Vietnam 4Research Center for Climate Change and Energy (RCCCE), Hallym University, Chuncheon 24252, Korea 5, Korea 6Environmental Resources Research Department, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 22689, Korea 7Process Design and Development Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
Korean Journal of Chemical Engineering, April 2022, 39(4), 954-962(9), 10.1007/s11814-021-1000-4
downloadDownload PDF

Abstract

COVID-19 has drawn great attention on the necessity for establishing pathogen-free indoor air. This paper offers an insight into the potential application of a multi-purpose filter to remove fine particulates and disinfect pathogens using melamine sponge with a copper-organic framework. In-situ growth dip coating method was applied to coat Cu-based coordination polymer particle (Cu-CPP) on melamine sponge (MS). The integration of Cu-CPPs with high crystallinity and highly active surface area (1,318.1m2/g) enabled Cu-CPP/MS to have an excellent capture rate (99.66%) and an instant disinfection rate of 99.54% for Escherichia coli. Electrostatic attraction seemed to play a crucial role in capturing negative-charged pathogens effectively by positive charges on Cu-CPP arising from unbalanced copper ions in Cu-CPP. Disinfection of pathogens was mainly attributed to catalytically active Cu2+ sites. Organic ligand played an important role in bridging and maintaining Cu2+ ions within the framework. This study highlights the design of a new capture-and-disinfection (CDS) air filter system for pathogens using Cu-CPP/MS. It can be applied as a substitute for conventional high-efficiency particulate air (HEPA) filters.

References

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Nature, 579, 270 (2020)
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Nature, 579, 265 (2020)
Klaiber P, Wen JH, DeLongis A, Sin NL, J. Gerontol B Psychol. Sci. Soc. Sci., 76, e30 (2021)
Gaffney JS, Marley NA, ACS Symposium Series, 919, 286 (2005)
Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD, Sci. Rep., 9, 2348 (2019)
Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK, Sun L, Duan Y, Cai J, Westerdahl D, Liu X, Xu K, Ho KF, Kan H, Fu Q, Nature, 582, 557 (2020)
Stadnytskyi V, Bax CE, Bax A, Anfinrud P, Proc. Natl. Acad. Sci., 117, 11875 (2020)
Wang B, Zhang A, Sun JL, Liu H, Hu J, Xu LX, J. Biomech. Eng. -Trans. ASME, 127, 32 (2005)
Mui KW, Wong LT, Wu CL, Lai ACK, J. Hazard. Mater., 167, 736 (2009)
de Abajo FJG, Hernández RJ, Kaminer I, Meyerhans A, Rosell-Llompart J, Sanchez-Elsner T, ACS Nano, 14, 7704 (2020)
Passweg JR, Rowlings PA, Atkinson KA, Barrett AJ, Gale RP, Gratwohl A, Jacobsen N, Klein JP, Ljungman P, Bone Marrow Transplant., 21, 1231 (1998)
Oren I, Haddad N, Finkelstein R, Rowe JM, Am. J. Hematol., 66, 257 (2001)
Tellier R, Emerging Infect. Dis., 12, 1657 (2006)
Wargocki P, ASHRAE J., 57, 70 (2015)
Maus R, Goppelsröder A, Umhauer H, Atmos. Environ., 35, 105 (2001)
Price DL, Simmons RB, Crow SA Jr, Ahearn DG, J. Ind. Microbiol. Biotechnol., 32, 319 (2005)
Gilbert Y, Duchaine C, Can. J. Civ. Eng., 36, 1873 (2009)
Menzies D, Hdb Env Chem, 4, 151 (2005)
Bull K, Travel Med. Infect. Dis., 6, 142 (2008)
Perrier JCB, Coq LL, Andrès Y, Cloirec PL, Int. J. Chem. React. Eng., 6, 1 (2008)
Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G, Cao J, Dancer S, Floto A, Franchimon F, Environ. Int., 142, 105832 (2020)
Mousavi ES, Kananizadeh N, Martinello RA, Sherman JD, Environ. Sci. Technol. Lett., 55, 4134 (2020)
Umemura A, Diring S, Furukawa S, Uehara H, Tsuruoka T, Kitagawa S, J. Am. Chem. Soc., 133, 15506 (2011)
Shen M, Forghani F, Kong X, Liu D, Ye X, Chen S, Ding T, Compr. Rev. Food Sci. Food Saf., 19, 1397 (2020)
Xiao J, Chen S, Yi J, Zhang HF, Ameer GA, Adv. Funct. Mater., 27, 1604872 (2017)
Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S, Acta Biomater., 4, 707 (2008)
Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, Xiao Y, Biomaterials, 33, 2076 (2012)
Li P, Li J, Feng X, Li J, Hao Y, Zhang J, Wang H, Yin A, Zhou J, Ma X, Wang B, Nat. Commun., 10, 2177 (2019)
Gritsch L, Lovell C, Goldmann WH, Boccaccini AR, Carbohydr. Polym., 179, 370 (2018)
Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID, Science, 283, 1148 (1999)
Abbasi AR, Akhbari K, Morsali A, Ultrason. Sonochem., 19, 846 (2012)
Singbumrung K, Motina K, Pisitsak P, Chitichotpanya P, Wongkasemjit S, Inprasit T, Fibers Polym., 19, 1373 (2018)
Emam HE, Darwesh OM, Abdelhameed RM, Colloids Surf. B: Biointerfaces, 165, 219 (2018)
Rubin HN, Neufeld BH, Reynolds MM, ACS Appl. Mater. Interfaces, 10, 15189 (2018)
Ramya G, Camus O, Chew YMJ, Crittenden B, Perera S, ACS Appl. Polym. Mater., 2, 1569 (2020)
Yu L, Peel GK, Cheema FH, Lawrence WS, Bukreyeva N, Jinks CW, Peel JE, Peterson JW, Paessler S, Hourani M, Ren Z, Mater. Today Phys., 15, 100249 (2020)
Chen Y, Zhang S, Cao S, Li S, Chen F, Yuan S, Xu C, Zhou J, Feng X, Ma X, Wang B, Adv. Mater., 29, 1606221 (2017)
Feng Y, Yao J, Ind. Eng. Chem. Res., 57, 7322 (2018)
Gamez P, de Hoog P, Lutz M, Spek AL, Reedijk J, Inorg. Chim. Acta., 351, 319 (2003)
Wiles AB, Bozzuto D, Cahill CL, Pike RD, Polyhedron, 25, 776 (2006)
Zhao Y, Watanabe K, Hashimoto K, J. Am. Chem. Soc., 134, 19528 (2012)
Zhao Y, Watanabe K, Hashimoto K, J. Mater. Chem. A, 1, 1450 (2013)
Shanmugakala R, Tharmaraj P, Sheela CD, J. Mol. Struct., 1076, 606 (2014)
Shanmugakala R, Tharmaraj P, Sheela CD, Chidambaranathan N, Med. Chem. Res., 23, 329 (2014)
Ding Y, Xu W, Yu Y, Hou H, Zhu Z, ACS Appl. Mater. Interfaces, 10, 6652 (2018)
Deng CH, Gong JL, Zhang P, Zeng GM, Song B, Liu HY, J. Colloid Interface Sci., 488, 26 (2017)
Pinto J, Magrì D, Valentini P, Palazon F, Heredia-Guerrero JA, Lauciello S, Barroso-Solares S, Ceseracciu L, Pompa PP, ACS Appl. Mater. Interfaces, 10, 16095 (2018)
Hwang GB, Lee JE, Nho CW, Lee BU, Lee SJ, Jung JH, Bae GN, Sci. Total Environ., 421-422, 273 (2012)
Choi DY, Heo KJ, Kang J, An EJ, Jung SH, Lee BU, Lee HM, Jung JH, J. Hazard. Mater., 351, 29 (2018)
Park DH, Joe YH, Piri A, An S, Hwang J, J. Hazard. Mater., 396, 122640 (2020)
Ma S, Zhang M, Nie J, Yang B, Song S, Lu P, Cellulose, 25, 5999 (2018)
Rodríguez HS, Hinestroza JP, Ochoa-Puentes C, Sierra CA, Soto CY, J. Appl. Polym. Sci., 131, 40815 (2014)
Lis MJ, Caruzi BB, Gil GA, Samulewski RB, Bail A, P.Scacchetti FA, Moisés MP, Bezerra FM, Polymer, 11, 713 (2019)
Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Nat. Chem., 4, 310 (2012)
Kuo CH, Tang Y, Chou LY, Sneed BT, Brodsky CN, Zhao Z, Tsung CK, J. Am. Chem. Soc., 134, 14345 (2012)
Nasrullah A, Khan AS, Bhat AH, Din IU, Inayat A, Muhammad N, Bakhsh EM, Khan SB, Renew. Energy, 168, 723 (2021)
Chen H, Wang L, Yang J, Yang RT, J. Phys. Chem. C, 117, 7565 (2013)
Gao H, Sun P, Zhang Y, Zeng X, Wang D, Zhang Y, Wang W, Wu J, Surf. Coat. Technol., 339, 147 (2018)
Zhou H, Zhang T, Yue X, Peng Y, Qiu F, Yang D, Ind. Eng. Chem. Res., 58, 4844 (2019)
Loera-Serna S, Oliver-Tolentino MA, de Lourdes López- Núñez M, Santana-Cruz A, Guzmán-Vargas A, Cabrera-Sierra R, J. Alloy. Compd., 540, 113 (2012)
Riccò R, Linder-Patton O, Sumida K, Styles MJ, Liang K, Amenitsch H, Doonan CJ, Falcaro P, Chem. Mater., 30, 5630 (2018)
Ma K, Wang Y, Chen Z, Islamoglu T, Lai C, Wang X, Fei B, Farha OK, Xin JH, ACS Appl. Mater. Interfaces, 11, 22714 (2019)
Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang B, J. Am. Chem. Soc., 138, 5785 (2016)
Li TT, Cen X, Ren HT, Wu L, Peng HK, Wang W, Gao B, Lou CW, Lin JH, ACS Appl. Mater. Interfaces, 12, 8730 (2020)
Li Z, Ma J, Ruan J, Zhuang X, Nanoscale Res. Lett., 14, 195 (2019)
Rauf A, Ye J, Zhang S, Qi Y, Wang G, Che Y, Ning G, Dalton Trans., 48, 17810 (2019)
Kumar R, Münstedt H, Biomaterials, 26, 2081 (2005)
Li B, Li Y, Zhao Y, Sun L, J. Phys. Chem. Solids, 74, 1842 (2013)
Shen M, Forghani F, Kong X, Liu D, Ye X, Chen S, Ding T, Compr. Rev. Food Sci. Food Saf., 19, 1397 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로