ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 15, 2021
Accepted November 28, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Drying characteristics of thermally pre-treated Cobra 26 F1 tomato slabs and applicability of Gaussian process regression-based models for the prediction of experimental kinetic data

1Department of Chemical Engineering, Michael Okpara University of Agriculture, PMB 7267, Umudike, Abia State, Nigeria 2Department of Mechanical Engineering, Ladoke Akintola University of Technology PMB 4000, Ogbomoso, Oyo State Nigeria 3Forest Research Institute of Nigeria, PMB 5054, Jericho Ibadan, Oyo State, Nigeria 4Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia (USM), 11800, Gelugor, Penang, Malaysia 5Department of Chemical Engineering, Landmark University, P.M.B 1001, Omu-Aran, Kwara State, Nigeria 6, Nigeria 7Department of Chemical Engineering, Ladoke Akintola University of Technology PMB 4000, Ogbomoso, Oyo State Nigeria
Korean Journal of Chemical Engineering, May 2022, 39(5), 1135-1145(11), 10.1007/s11814-021-1032-9
downloadDownload PDF

Abstract

The drying characteristics of unblanched (UB), steam blanched (SB) and hot water blanched (WB) Cobra 26 F1 tomatoes were investigated at drying temperature of 40, 50, 60 and 70 ℃ and constant air velocity of 1.2m/s in a convective oven. Gaussian process regression (GPR)-based models defined with squared-exponential kernel (GPR-SE), rational quadratic kernel (GPR-RQ), Matern 5/2 kernel (GPR-M 5/2) and exponential kernel (GPR-Ex) were employed to model and predict experimental kinetic data of UB, SB and WB samples. Blanching and increased drying temperature reduced the drying time. The effective moisture diffusivity, activation energy, total and specific energy requirement for UB, SB and WB ranged between 3.6466 E -10 - 2.5526 E -09m2/s, 27.86-43.65 kJ/mol, 7.08-18.33kW-h and 1,069.12-2,768.80kW-h/kg, respectively. Increased drying temperature and pre-treatment reduced activation energy, total and specific energy requirements of Cobra 26 F1 tomatoes. Investigated GPR-based models were suitable for modelling and prediction of experimental kinetic data of Cobra 26 F1 tomatoes, GPR-M 5/2 was, however, marginally better. Hence, GPR-based models showed high suitability in handling multi-dimensional drying variables and can be used for developing robust controllers applicable in auto-monitoring and control of Cobra 26 F1 tomatoes industrial drying.

References

Iyanda RA, Adeboye AO, Yusuf KA, An. Univ. “Eftimie Murgu”, 21, 1 (2014)
Idah PA, Musa JJ, Olaleye ST, AU J.T., 14, 1 (2010)
Akintunde TT, Akintunde BO, Fagbeja A, Afr. J. Food Agric. Nutr. Dev., 11, 7 (2011)
Akpinar EK, Toraman S, Heat Mass Transf., 52, 10 (2015)
Cheng LS, Fang S, Ruan ML, Int. J. Food Eng., 11, 2 (2015)
Kingsly ARP, Singh R, Goyal RK, Singh DB, Am. J. Food Technol., 2, 2 (2007)
Adeyi O, Adeyi AJ, Oke OE, NSChE J., 33, 1 (2018)
Karimi F, Rafiee S, Taheri-Garavand A, Karimi M, J. Taiwan Inst. Chem. E, 43, 1 (2012)
Mariem SB, Mabrouk SB, Khan M, Int. J. Energy Eng., 4, 17 (2014)
Doymaz I, J. Food Eng., 78, 4 (2007)
Ojediran JO, Okonkwo CE, Adeyi AJ, Adeyi O, Olaniran AF, George NE, Olayanju AT, Heliyon, 6, 3 (2020)
Stamatios JB, Vassilios GB, J. Food Eng., 65, 449 (2004)
Tunde-Akintunde T, Oyelade O, Akintunde B, Agric. Eng. Int. CIGR J., 16, 2 (2014)
Kaveh M, Sharabiani VR, Chayjan RA, Taghinezhad E, Abbaspour-Gilandeh Y, Golpour I, Inf. Process. Agric., 5, 3 (2018)
Sahoo NR, Bal ML, Pal SU, Sahoo D, Food Technol. Biotechnol., 53, 1 (2015)
Agarry SE, TURJAF, 4, 10 (2016)
Sun X, Jin X, Fu N, Chen X, Food Sci. Nutr., 8, 11 (2020)
Garba U, Kaur S, Gurumayum S, Rasane P, Food Technol. Biotechnol., 53, 3 (2015)
Chaurasia P, Younis K, Qadri OS, Srivastava G, Osama K, J. Food Process Eng., 42, 2 (2019)
Tao Y, Li Y, Zhou R, Chu DT, Su L, Han Y, Zhou J, J. Food Sci. Technol., 53, 10 (2016)
Jafari SM, Ganje M, Dehnad D, Ghanbari V, J. Food Process. Preserv., 40, 2 (2016)
Zhou L, Chen J, Song Z, Math Probl Eng., 2015, 1 (2015)
Lin C, Li T, Chen S, Liu X, Lin C, Liang S, Neural Comput. Appl., 31, 12 (2019)
Shabani S, Samadianfard S, Sattari MT, Mosavi A, Shamshirband S, Kmet T, Várkonyi-Kóczy AR, Atmosphere, 11, 1 (2020)
Tolba H, Dkhili N, Nou J, Eynard J, Thil S, Grieu S, IFACPapersOnLine, 52, 4 (2019)
Aregbesola OA, Ogunsina BS, Sofolahan AE, Chime NN, Niger. Food J., 33, 1 (2015)
Tunde‐Akintunde TY, J. Food Process. Preserv., 38, 4 (2014)
Kotlar AM, Iversen BV, de Jong van Lier Q, Vadose Zone J., 18, 1 (2019)
Lázaro-Gredilla M, Quiñonero-Candela J, Rasmussen CE, Figueiras-Vidal AR, J. Mach. Learn. Res., 11, 1865 (2010)
Doymaz I, Altıner P, Food Sci. Biotechnol., 21, 1 (2012)
Kipcak AS, Int. J. Therm. Eng., 4, 1 (2018)
Ni J, Ding C, Zhang Y, Song Z, Innov. Food Sci. Emerg. Technol., 61, 102318 (2020)
Abano EE, Ma H, Qu W, Teye E, Afr. J. Food Sci., 5, 7 (2011)
Ho AD, Yu CC, Educ Psychol Meas., 75, 3 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로