Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 19, 2021
Accepted November 9, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Enhanced photocatalytic hydrogen evolution under visible light using noble metal-free ZnS NPs/Ni@Trimellitic acid porous microsphere heterojunction
1Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, Anhui China 2Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230601, Anhui China 3Construction Economy and Real Estate Management Research Center, Anhui Jianzhu University, Hefei 230601, Anhui China 4, China
fjzhang@ahjzu.edu.cn
Korean Journal of Chemical Engineering, May 2022, 39(5), 1268-1276(9), 10.1007/s11814-021-1011-1
Download PDF
Abstract
The const ruction of late-model non-noble metal catalysts with above average performance and stability isthe best choice to implement visible light decomposition of water for hydrogen production and solve the problem of clean energy. Herein, novel ZnS nanoparticles (ZnS NPs) grown in situ on the surface of porous Ni@Trimellitic acid (Ni-TA) microspheres were successfully synthesized. The structure, optical properties, element composition and others of ZnS/Ni-TA composites were systematically analyzed by experimental characterization. The experimental results showed that pure ZnS showed very weak photocatalytic performance. However, the photocatalytic performance was greatly increased with the addition of Ni-TA. The yield of the best sample (3% ZnS/Ni-TA) reached 1,098 μmol/g/h, about 12 times higher than that of ZnS. Among them, Ni-TA not only can be used as the main body of exotic metal nanoparticles, but also the porous channels can prevent the agglomeration of nanoparticles. The enhanced H2 yield is mainly attributed to the resulting tight interface contact and well-matched band position which are conducive to effective carrier separation; moreover, the electrons quickly diverted to the exposed edge of Ni-TA for reducing to produce hydrogen. The combination of inorganic and new organic semiconductors provides an idea for hydrogen production under visible light.
References
Che H, Li C, Zhou P, Liu C, Dong H, Li C, Appl. Surf. Sci., 505, 144564 (2020)
Chen R, Wang P, Chen J, Wang C, Ao Y, Appl. Surf. Sci., 473, 11 (2019)
Chava RK, Do JY, Kang M, Appl. Surf. Sci., 433, 240 (2018)
Jin P, Wang L, Ma X, Lian R, Huang J, She H, Zhang M, Wang Q, Appl. Catal. B: Environ., 284, 119762 (2021)
Kumar A, Kumar M, Rao VN, Shankar MV, Bhattacharya S, Krishnan V, J. Mater. Chem. A, 9, 17006 (2021)
Feng Y, Xu M, Tremblay PL, Zhang T, Int. J. Hydrog. Energy, 46, 21901 (2021)
Jing M, Chen Z, Li Z, Li F, Chen M, Zhou M, He B, Chen L, Hou Z, Chen X, ACS Appl. Mater. Interfaces, 10, 704 (2018)
Rameshbabu R, Ravi P, Sathish M, Chem. Eng. J., 360, 1277 (2019)
Rao VN, Ravi P, Sathish M, Reddy NL, Lee K, Sakar M, Prathap P, Kumari MM, Reddy KR, J. Hazard. Mater., 413, 125359 (2021)
Kumar S, Reddy NL, Kushwaha HS, Kumar A, Shankar MV, Bhattacharyya K, Krishnan V, ChemSusChem, 10, 3588 (2017)
Ramírez-Ortega D, Ramos AB, Hernández-Gordillo A, Zanella R, Rodil SE, Int. J. Hydrog. Energy, 45, 30496 (2020)
Hong Y, Zhang J, Huang F, Zhang J, Wang X, Wu Z, Lin Z, Yu J, J. Mater. Chem. A, 3, 13913 (2015)
Rameshbabu R, Ravi P, Pecchi G, Delgado EJ, Mangalaraja RV, Sathish M, J. Colloid Interface Sci., 590, 82 (2021)
Dhingra S, Chhabra T, Krishnan V, Nagaraja CM, ACS Appl. Ener. Mater., 3, 7138 (2020)
Kumar A, Rao VN, Kumar A, Shankar MV, Krishnan V, ChemPhotoChem, 4, 427 (2020)
Kumar S, Kumar A, Rao VN, Kumar A, Shankar MV, Krishnan V, ACS Appl. Ener. Mater., 2, 5622 (2019)
Kim Y, Coy E, Kim H, Mrówczyński R, Torruella P, Jeong DW, Choi KS, Jang JH, Song MY, Jang DJ, Peiro F, Jurga S, Kim HJ, Appl. Catal. B: Environ., 280, 119423 (2021)
Soltani N, Saion E, Yunus WMM, Erfani M, Navasery M, Bahmanrokh G, Rezaee K, Appl. Surf. Sci., 290, 440 (2014)
Guo J, Khan S, Cho SH, Kim J, Appl. Surf. Sci., 473, 425 (2019)
Shan AY, Ghazi TIM, Rashid SA, Appl. Catal. A: Gen., 389, 1 (2010)
Rangsivek R, Jekel MR, Chemosphere, 71, 18 (2008)
Gocmez H, Ceram. Int., 32, 521 (2006)
Subha N, Mahalakshmi M, Monika S, Neppolian B, Int. J. Hydrog. Energy, 45, 7552 (2020)
Zhang C, Zhou Y, Bao J, Fang J, Zhao S, Zhang Y, Sheng X, Chen W, Chem. Eng. J., 346, 226 (2018)
Kumar A, Kumar A, Krishnan V, ACS Catalysis, 10, 10253 (2020)
Kumar A, Rao VN, Kumar A, Mushtaq A, Sharma L, Halder A, Krishnan V, ACS Appl. Ener. Mater., 3, 12134 (2020)
Kumar A, Krishnan V, Adv. Funct. Mater., 31, 2009807 (2021)
Zou F, Chen YM, Liu K, Yu Z, Liang W, Bhaway SM, Gao M, Zhu Y, ACS Nano, 10, 377 (2016)
Wang J, Liu Y, Wang Z, Wang P, Zheng Z, Qin X, Zhang X, Dai Y, Huang B, Int. J. Hydrog. Energy, 44, 16575 (2019)
Chen N, Cao J, Guo M, Liu C, Lin H, Chen S, Int. J. Hydrog. Energy, 46, 19363 (2021)
Wang X, Li G, Hassan FM, Li J, Fan X, Batmaz R, Xiao X, Chen Z, Nano Energy, 15, 746 (2015)
Zhou Q, Gong Y, Tao K, Electrochim. Acta, 320, 134582 (2019)
Ran J, Qu J, Zhang H, Wen T, Wang H, Chen S, Song L, Zhang X, Jing L, Zheng R, Qiao SZ, Adv. Energy Mater., 9, 1803402 (2019)
Sun H, Lian Y, Yang C, Xiong L, Qi P, Mu Q, Zhao X, Guo J, Deng Z, Peng Y, Energy Environ. Sci., 11, 2363 (2018)
Yan X, Jin Z, Chem. Eng. J., 420, 127682 (2020)
Liu T, Yang K, Jin Z, Mol. Catal., 510, 111691 (2021)
Shao B, Liu Z, Zeng G, Wu Z, Liu Y, Cheng M, Chen M, Liu Y, Zhang W, Feng H, ACS Sustain. Chem. Eng., 6, 16424 (2018)
Shao B, Liu X, Liu Z, Zeng G, Zhang W, Liang Q, Liu Y, He Q, Yuan X, Wang D, Luo S, Gong S, Chem. Eng. J., 374, 479 (2019)
Guo J, Liang Y, Liu L, Hu J, Wang H, An W, Cui W, Appl. Surf. Sci., 522, 146356 (2020)
Chen G, Li D, Li F, Fan Y, Zhao H, Luo Y, Yu R, Meng Q, Appl. Catal. A: Gen., 443, 138 (2012)
Hassan A, Liaquat R, Iqbal N, Ali G, Fan X, Hu Z, Anwar M, Ahmad A, J. Electroanal. Chem., 889, 115223 (2021)
Chu LL, Catal. Commun., 128, 105705 (2019)
Xie YP, Yu ZB, Liu G, Ma XL, Cheng HM, Energy Environ. Sci., 7, 1895 (2014)
Yang X, Xue H, Xu J, Huang X, Zhang J, Tang YB, Ng TW, Kwong HL, Meng XM, Lee CS, ACS Appl. Mater. Interfaces, 6, 9078 (2014)
Khan S, Je M, Ton NNT, Lei W, Taniike T, Yanagida S, Ogawa D, Suzuki N, Terashima C, Fujishima A, Choi H, Katsumata KI, Appl. Catal. B: Environ., 297, 120473 (2021)
Jiang F, Pan B, You D, Zhou Y, Wang X, Su W, Catal. Commun., 85, 39 (2016)
Xiao L, Chen H, Huang J, Mater. Res. Bull., 64, 370 (2015)
Zhu S, Qian X, Lan D, Yu Z, Wang X, Su W, Appl. Catal. B: Environ., 269, 118806 (2020)
Wang X, Cao Z, Zhang Y, Xu H, Cao S, Zhang R, Chem. Eng. J., 385, 123782 (2020)
Feng W, Wang Y, Huang X, Wang K, Gao F, Zhao Y, Wang B, Zhang L, Liu P, Appl. Catal. B: Environ., 220, 324 (2018)
Yang X, Liu H, Li T, Huang B, Hu W, Jiang Z, Chen J, Niu Q, Int. J. Hydrog. Energy, 45, 26967 (2020)
Chen R, Wang P, Chen J, Wang C, Ao Y, Appl. Surf. Sci., 473, 11 (2019)
Chava RK, Do JY, Kang M, Appl. Surf. Sci., 433, 240 (2018)
Jin P, Wang L, Ma X, Lian R, Huang J, She H, Zhang M, Wang Q, Appl. Catal. B: Environ., 284, 119762 (2021)
Kumar A, Kumar M, Rao VN, Shankar MV, Bhattacharya S, Krishnan V, J. Mater. Chem. A, 9, 17006 (2021)
Feng Y, Xu M, Tremblay PL, Zhang T, Int. J. Hydrog. Energy, 46, 21901 (2021)
Jing M, Chen Z, Li Z, Li F, Chen M, Zhou M, He B, Chen L, Hou Z, Chen X, ACS Appl. Mater. Interfaces, 10, 704 (2018)
Rameshbabu R, Ravi P, Sathish M, Chem. Eng. J., 360, 1277 (2019)
Rao VN, Ravi P, Sathish M, Reddy NL, Lee K, Sakar M, Prathap P, Kumari MM, Reddy KR, J. Hazard. Mater., 413, 125359 (2021)
Kumar S, Reddy NL, Kushwaha HS, Kumar A, Shankar MV, Bhattacharyya K, Krishnan V, ChemSusChem, 10, 3588 (2017)
Ramírez-Ortega D, Ramos AB, Hernández-Gordillo A, Zanella R, Rodil SE, Int. J. Hydrog. Energy, 45, 30496 (2020)
Hong Y, Zhang J, Huang F, Zhang J, Wang X, Wu Z, Lin Z, Yu J, J. Mater. Chem. A, 3, 13913 (2015)
Rameshbabu R, Ravi P, Pecchi G, Delgado EJ, Mangalaraja RV, Sathish M, J. Colloid Interface Sci., 590, 82 (2021)
Dhingra S, Chhabra T, Krishnan V, Nagaraja CM, ACS Appl. Ener. Mater., 3, 7138 (2020)
Kumar A, Rao VN, Kumar A, Shankar MV, Krishnan V, ChemPhotoChem, 4, 427 (2020)
Kumar S, Kumar A, Rao VN, Kumar A, Shankar MV, Krishnan V, ACS Appl. Ener. Mater., 2, 5622 (2019)
Kim Y, Coy E, Kim H, Mrówczyński R, Torruella P, Jeong DW, Choi KS, Jang JH, Song MY, Jang DJ, Peiro F, Jurga S, Kim HJ, Appl. Catal. B: Environ., 280, 119423 (2021)
Soltani N, Saion E, Yunus WMM, Erfani M, Navasery M, Bahmanrokh G, Rezaee K, Appl. Surf. Sci., 290, 440 (2014)
Guo J, Khan S, Cho SH, Kim J, Appl. Surf. Sci., 473, 425 (2019)
Shan AY, Ghazi TIM, Rashid SA, Appl. Catal. A: Gen., 389, 1 (2010)
Rangsivek R, Jekel MR, Chemosphere, 71, 18 (2008)
Gocmez H, Ceram. Int., 32, 521 (2006)
Subha N, Mahalakshmi M, Monika S, Neppolian B, Int. J. Hydrog. Energy, 45, 7552 (2020)
Zhang C, Zhou Y, Bao J, Fang J, Zhao S, Zhang Y, Sheng X, Chen W, Chem. Eng. J., 346, 226 (2018)
Kumar A, Kumar A, Krishnan V, ACS Catalysis, 10, 10253 (2020)
Kumar A, Rao VN, Kumar A, Mushtaq A, Sharma L, Halder A, Krishnan V, ACS Appl. Ener. Mater., 3, 12134 (2020)
Kumar A, Krishnan V, Adv. Funct. Mater., 31, 2009807 (2021)
Zou F, Chen YM, Liu K, Yu Z, Liang W, Bhaway SM, Gao M, Zhu Y, ACS Nano, 10, 377 (2016)
Wang J, Liu Y, Wang Z, Wang P, Zheng Z, Qin X, Zhang X, Dai Y, Huang B, Int. J. Hydrog. Energy, 44, 16575 (2019)
Chen N, Cao J, Guo M, Liu C, Lin H, Chen S, Int. J. Hydrog. Energy, 46, 19363 (2021)
Wang X, Li G, Hassan FM, Li J, Fan X, Batmaz R, Xiao X, Chen Z, Nano Energy, 15, 746 (2015)
Zhou Q, Gong Y, Tao K, Electrochim. Acta, 320, 134582 (2019)
Ran J, Qu J, Zhang H, Wen T, Wang H, Chen S, Song L, Zhang X, Jing L, Zheng R, Qiao SZ, Adv. Energy Mater., 9, 1803402 (2019)
Sun H, Lian Y, Yang C, Xiong L, Qi P, Mu Q, Zhao X, Guo J, Deng Z, Peng Y, Energy Environ. Sci., 11, 2363 (2018)
Yan X, Jin Z, Chem. Eng. J., 420, 127682 (2020)
Liu T, Yang K, Jin Z, Mol. Catal., 510, 111691 (2021)
Shao B, Liu Z, Zeng G, Wu Z, Liu Y, Cheng M, Chen M, Liu Y, Zhang W, Feng H, ACS Sustain. Chem. Eng., 6, 16424 (2018)
Shao B, Liu X, Liu Z, Zeng G, Zhang W, Liang Q, Liu Y, He Q, Yuan X, Wang D, Luo S, Gong S, Chem. Eng. J., 374, 479 (2019)
Guo J, Liang Y, Liu L, Hu J, Wang H, An W, Cui W, Appl. Surf. Sci., 522, 146356 (2020)
Chen G, Li D, Li F, Fan Y, Zhao H, Luo Y, Yu R, Meng Q, Appl. Catal. A: Gen., 443, 138 (2012)
Hassan A, Liaquat R, Iqbal N, Ali G, Fan X, Hu Z, Anwar M, Ahmad A, J. Electroanal. Chem., 889, 115223 (2021)
Chu LL, Catal. Commun., 128, 105705 (2019)
Xie YP, Yu ZB, Liu G, Ma XL, Cheng HM, Energy Environ. Sci., 7, 1895 (2014)
Yang X, Xue H, Xu J, Huang X, Zhang J, Tang YB, Ng TW, Kwong HL, Meng XM, Lee CS, ACS Appl. Mater. Interfaces, 6, 9078 (2014)
Khan S, Je M, Ton NNT, Lei W, Taniike T, Yanagida S, Ogawa D, Suzuki N, Terashima C, Fujishima A, Choi H, Katsumata KI, Appl. Catal. B: Environ., 297, 120473 (2021)
Jiang F, Pan B, You D, Zhou Y, Wang X, Su W, Catal. Commun., 85, 39 (2016)
Xiao L, Chen H, Huang J, Mater. Res. Bull., 64, 370 (2015)
Zhu S, Qian X, Lan D, Yu Z, Wang X, Su W, Appl. Catal. B: Environ., 269, 118806 (2020)
Wang X, Cao Z, Zhang Y, Xu H, Cao S, Zhang R, Chem. Eng. J., 385, 123782 (2020)
Feng W, Wang Y, Huang X, Wang K, Gao F, Zhao Y, Wang B, Zhang L, Liu P, Appl. Catal. B: Environ., 220, 324 (2018)
Yang X, Liu H, Li T, Huang B, Hu W, Jiang Z, Chen J, Niu Q, Int. J. Hydrog. Energy, 45, 26967 (2020)