ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 18, 2021
Accepted October 12, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Electrode modifier performance of TiO2 incorporated carbon quantum dots nanocomposites on Fe(CN)6 3-/Fe(CN)6 4- electrochemical system

Department of Mathematics and Natural Sciences, Faculty of Tarbiyah, Institut Agama Islam Negeri (IAIN) Kendari, 93116, Southeast Sulawesi, Indonesia 1Department of Textile Chemistry, Politeknik STTT Bandung, 40272, West Java, Indonesia
Korean Journal of Chemical Engineering, May 2022, 39(5), 1333-1338(6), 10.1007/s11814-021-0980-4
downloadDownload PDF

Abstract

TiO2 incorporated carbon quantum dot nanocomposite, (CQDs@TiO2) was synthesized and applied as a new modifier for carbon paste electrode (CPE). The synthesis process consisted of two steps: the synthesis of a carbon quantum dot (CQDs) solution electrochemically and the synthesis of CQDs@TiO2 by impregnation. The characterization results show that the morphology of CQDs@TiO2 is composed of small particles with different particle sizes which causes the nanocomposite surface to be non-uniform. The impregnation process causes a change in the average particle size of TiO2 from 29.32 to 33.23 nm. This process also produces new diffractograms at positions 2Θ=53.75° and 54.95° . In addition, its process changes the specific wave number absorption (1/λ) TiO2 for -OH stretching (3,300 cm-1 to 3,369 cm-1) and -OH bending (1,631 cm-1 to 1,660 cm-1). This shift in wavenumber was followed by the presence of new absorption at wavenumbers of 2,162 cm-1 and 1,371 cm-1. Based on the performance test of CQDs@TiO2 as a CPE modifier, it shows that CQDs@TiO2 improves CPE performance in the Fe(CN)6 3-/Fe(CN)6 4- solution system. It is characterized by an increase in both oxide and reducing currents and a narrowing of the voltammogram peaks. The optimum mass of CQDs@TiO2 as a CPE modifier is 0.01 g with an electroactive surface area of 0.27 cm2. The overall results of this work indicate that the CQDs@TiO2 nanocomposite can be applied as an electrode modifier for electrochemical sensor applications in the future.

References

Nurdin M, Agusu L, Putra AAM, Maulidiyah M, Arham Z, Wibowo D, Muzakkar MZ, Umar AA, J. Phys. Chem. Solids, 131, 104 (2019)
Nurdin M, Prabowo OA, Arham Z, Wibowo D, Maulidiyah M, Saad SKM, Umar AA, Surf. Interfaces, 16, 108 (2019)
Nurdin M, Arham Z, Rahayu S, Maulidiyah M, J. Rekayasa Kim. Lingkung, 15, 71 (2020)
Danyıldız Z, Uzun D, Calam TT, Hasdemir E, J. Electroanal. Chem., 805, 177 (2017)
Yuan-Yuan LU, Meng-Ni C, Yi-Li GAO, Jian-Mao Y, Xiao-Yu MA, Jian-Yun LIU, Chin. J. Anal. Chem., 43, 1395 (2015)
Nurdin M, Dali N, Irwan I, Maulidiyah M, Arham Z, Ruslan R, Hamzah B, Sarjuna S, Wibowo D, Anal. Bioanal. Electrochem., 10, 1538 (2018)
Nurdin M, Arham Z, Rasyid J, Maulidiyah M, Mustapa F, Sosidi H, Ruslan R, Salim LOA, Electrochemical performance of carbon paste electrode modified TiO2/Ag-Li (CPE-TiO2/Ag-Li) in determining fipronil compound, in: J. Phys. Conf. Ser., IOP Publishing, 12067 (2021).
Nabil AA, Emran K, Alanazi H, Turkish J. Chem., 44, 1122 (2020)
Fadillah G, Triana S, Chasanah U, Saleh TA, Sens. Bio-Sensing Res., 30, 100391 (2020)
Manasa G, Raj C, Satpati AK, Mascarenhas RJ, Electroanalysis, 32, 2431 (2020)
de Brito AR, dos Santos Reis N, Oliveira PC, Rezende DVB, Monteiro GP, Soares GA, de Jesus RS, Santos AS, J. Food Sci. Technol., 57, 1342 (2020)
Wong A, Santos AM, Fatibello‐Filho O, Sotomayor MDPT, Electroanalysis, 33, 431 (2021)
Nontawong N, Amatatongchai M, Jarujamrus P, Nacapricha D, Lieberzeit PA, Sens. Actuators B-Chem., 334, 129636 (2021)
Tcheumi HL, Wendji APK, Tonle IK, Ngameni E, J. Anal. Methods Chem., 2020 (2020)
Zayed MA, Mahmoud WH, Abbas AA, Ali AE, Mohamed GG, RSC Adv., 10, 17552 (2020)
Radić J, Buljac M, Genorio B, Gričar E, Kolar M, Sensors, 21, 2955 (2021)
Zayed MA, Abbas AA, Mahmoud WH, Ali AE, Mohamed GG, Microchem J., 159, 105478 (2020)
Rajabi N, Masrournia M, Abedi M, Chem. Methodol., 4, 660 (2020)
Abdel-Raoof AM, Elsonbaty A, Abdulwahab S, Hassan WS, Eissa MS, Microchem J., 165, 106185 (2021)
Uddin MT, Alam MM, Asiri AM, Rahman MM, Toupance T, Islam MA, RSC Adv., 10, 122 (2020)
Alam MM, Asiri AM, Rahman MM, Islam MA, Surf. Interfaces, 19, 100540 (2020)
Alam MM, Rahman MM, Asiri AM, Fazal MA, J. Mater. Sci. -Mater. Electron., 32, 5259 (2021)
Nurdin M, Maulidiyah M, Muzakkar MZ, Umar AA, Microchem J., 145, 756 (2019)
Afkhami A, Ghaedi H, Madrakian T, Rezaeivala M, Electrochim. Acta, 89, 377 (2013)
Khasanah M, Widati AA, Handajani US, Shofiyyah MR, Rakhma SA, Predianto H, Imprinted zeolite modified carbon paste electrode as a selective potentiometric sensor for blood glucose, in: AIP Conf. Proc., AIP Publishing LLC, 20011 (2020).
Atacan K, Özacar M, Mater. Chem. Phys., 266, 124527 (2021)
Belkhamsa N, Ouattara L, Ksibi M, J. Electrochem. Soc., 162, B212 (2015)
Mashhadizadeh MH, Afshar E, Electrochim. Acta, 87, 816 (2013)
Tashkhourian J, Ana SFN, Hashemnia S, Hormozi-Nezhad MR, J. Solid State Electrochem., 17, 157 (2013)
Ensafi AA, Bahrami H, Rezaei B, Karimi-Maleh H, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 33, 831 (2013)
Hassaninejad-Darzi SK, Shajie F, J. Braz. Chem. Soc., 28, 529 (2017)
Hu Q, Gong X, Liu L, Choi MMF, J. Nanomater., 2017 (2017)
Pal A, Sk MP, Chattopadhyay A, Mater. Adv., 1, 525 (2020)
Mondal TK, Gupta A, Shaw BK, Mondal S, Ghorai UK, Saha SK, RSC Adv., 6, 59927 (2016)
Atacan K, J. Alloy. Compd., 791, 391 (2019)
Bas SZ, Yuncu N, Atacan K, Ozmen M, Electrochim. Acta, 386, 138519 (2021)
Sang L, Lin J, Zhao Y, Int. J. Hydrog. Energy, 42, 12122 (2017)
Wu CI, Huang JW, Wen YL, Wen SB, Shen YH, Yeh MY, Mater. Lett., 62, 1923 (2008)
Siddique AB, Pramanick AK, Chatterjee S, Ray M, Sci. Rep., 8, 1 (2018)
Suwarnkar MB, Dhabbe RS, Kadam AN, Garadkar KM, Ceram. Int., 40, 5489 (2014)
Stuart BH, Infrared spectroscopy: Fundamentals and applications, John Wiley & Sons (2004).
Ramezani S, Ghobadi M, Bideh BN, Sens. Actuators B-Chem., 192, 648 (2014)
Shetti NP, Nayak DS, Malode SJ, Kulkarni RM, J. Electrochem. Soc., 164, B3036 (2016)
Demir N, Atacan K, Ozmen M, Bas SZ, New J. Chem., 44, 11759 (2020)
Dhulkefl AJ, Atacan K, Bas SZ, Ozmen M, Anal. Methods, 12, 499 (2020)
Deng P, Xu Z, Li J, Microchim. Acta., 181, 1077 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로