ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 13, 2021
Accepted January 21, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Investigation on flow characteristic and reaction process inside an EVA autoclavereactor using CFD modeling combined with polymerization kinetics

1Key Laboratory for Green Chemical Technology of the Ministry of Education, Tianjin University R&D Center for Petrochemical Technology, Tianjin 300072, China 2Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China, China
donghe@tju.edu.cn
Korean Journal of Chemical Engineering, June 2022, 39(6), 1384-1395(12), 10.1007/s11814-022-1075-6
downloadDownload PDF

Abstract

EVA is an important high-performance resin material obtained by the copolymerization of ethylene and vinyl acetate. In the present study, a comprehensive computational fluid dynamics (CFD) model was established to study the EVA free radical copolymerization process. The polymerization kinetic model was combined with the CFD model. The EVA copolymerization reaction mechanism was verified by comparing the simulation results with the experimental results. Detailed information of the flow field inside the industrial EVA autoclave reactor was obtained. With the increase of the impeller speed, both the axial and radial flows inside the autoclave reactor were enhanced. The high impeller speed improved the fluid mixing and the homogeneity of temperature distribution. The increase of the impeller speed improved the initiator dispersion near the inlets, thereby increasing the efficiency of the initiator. The influence of operating conditions on monomer conversion and specific initiator consumption per 1% of the monomer reacted was investigated. The simulation results give deep insight into the free radical copolymerization process inside the autoclave reactor and supply the guidelines for developing an industrial autoclave reactor.

References

Tambe SP, Singh SK, Patri M, Kumar D, Prog. Org. Coat., 62, 382 (2008)
Zarrouki A, Espinosa E, Boisson C, Monteil V, Macromolecules, 50, 3516 (2017)
Ghiass M, Hutchinson RA, Polym. React. Eng., 11, 989 (2003)
Wells GJ, Ray WH, AIChE J., 51, 3205 (2005)
Pladis P, Kiparissides CA, Ind. Eng. Chem. Res., 58, 13093 (2019)
Kiparissides C,Verros G, Macgregor JA, J. Macromol. Sci.-Polym. Rev, 33, 437 (1993)
Lee Y, Jeon K, Cho J, Na J, Park J, Jung I, Park J, Park MJ, Lee WB, Ind. Eng. Chem. Res., 58, 16459 (2019)
Patel H, Dhib R, Ein-Mozaffari F, Chem. Eng. Technol., 33, 258 (2010)
Roudsari SF, Ein-Mozaffari F, Dhib R, Chem. Eng. J., 219, 429 (2013)
Xu C, Wang J, Gu X, Feng L, Chem. Eng. Commun., 205, 857 (2018)
Wells GJ, Ray WH, Macromol. Mater. Eng., 290, 319 (2005)
Luft G, Jabbari M, Dorn M, Angew. Makromol. Chem., 238, 87 (1996)
Chien IL, Kan TW, Chen BS, Comput. Chem. Eng., 31, 233 (2007)
Jacob N, Dhib R, J. Ind. Eng. Chem., 18, 1781 (2012)
Sarmoria C, Brandolin A, Lopez-Rodriguez A, Whiteley KS, Fernandez BD, Polym. Eng. Sci., 41, 1480 (2000)
Cui J, Ni L, Jiang J, Pan Y, Wu H, Chen Q, Org. Process Res. Dev., 23, 389 (2019)
Read NK, Zhang SX, Ray WH, AIChE J., 43, 104 (1997)
Wehinger GD, Eppinger T, Kraume M, Chem. Eng. Sci., 122, 197 (2015)
Zhuang Y, Gao X, Zhu Y, Luo Z, Powder Technol., 221, 419 (2012)
Shin T, Liou WW, Shabbir A, Yang Z, Zhu J, Comput. Fluids, 24, 227 (1995)
Becker P, Buback M, Sandmann J, Macromol. Chem. Phys., 203, 2113 (2002)
Xie T, Hamielec A, Macromol. Theory Simul., 2, 777 (1993)
Xie T, Hamielec A, Macromol. Theory Simul., 2, 455 (1993)
Xie T, Hamielec A, Macromol. Theory Simul., 2, 421 (1993)
Hamielec A, MacGregor J, Penlidis A, Makromol. Chem. Macromol. Symp., 10-11, 521 (1987)
Soares J, Chem. Eng. Sci., 56, 4131 (2001)
Pladis P, Kiparissides C, Chem. Eng. Sci., 53, 3315 (1998)
Hulburt H, Katz S, Chem. Eng. Sci., 19, 555 (1964)
Roudsari S, Turcotte G, Dhib R, Ein-Mozaffari F, Comput. Chem. Eng., 45, 124 (2012)
Zhang S, Ray W, AIChE J., 43, 1265 (1997)
He C, Wang J, Wang R, Zhang X, Renew. Energy, 168, 1177 (2021)
Erdogan S, Alpbaz M, Karagöz AR, Chem. Eng. J., 86, 259 (2002)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로