ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 12, 2021
Accepted December 16, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Numerical simulation of thermal performance of bionic waste heat utilization equipment filled with nanofluids

School of Low-carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
qicong@cumt.edu.cn
Korean Journal of Chemical Engineering, June 2022, 39(6), 1412-1423(12), 10.1007/s11814-021-1047-2
downloadDownload PDF

Abstract

This paper, mainly through designing a reinforced structure from the perspective of bionics and substituting a new heat exchange working medium for the traditional working medium, attempted to figure out the thermal performance of the waste heat recovery device. By means of numerical method, the following five factors, namely the effects of Reynolds number (Re=1,300-1,800), the new heat transfer medium (CuO-H2O nanofluids), the angular frequency of the bionic reinforced structure (ω=20 rad/s, ω=25 rad/s, ω=30 rad/s), the amplitude of the bionic reinforced structure (A=1 mm, A=2mm, A=3 mm), and the phase shift of the bionic reinforced structure (α=0° , 90° , 180° ) were probed so as to reveal their effects on the thermal performance of the waste heat recovery unit as well as the latent influencing mechanism. It was found that the improvement of the thermal transmission performance of the afterheat recovery unit synchronizes with the increase of angular frequency, amplitude and phase shift.

References

Selimefendigil F, Öztop HF, Int. J. Mech. Sci., 194, 106210 (2021)
Wang X, Gao X, Bao K, Hua C, Han X, Chen G, Int. J. Therm. Sci., 28, 246 (2019)
Jin H, Lin G, Guo Y, Bai L, Wen D, Renew. Energy, 145, 2337 (2020)
Li Z, Selimefendigil F, Sheikholeslami M, Shafee A, Alghamdi M, Microsyst. Technol., 26(2), 333 (2020)
Afrand M, Shahsavar A, Sardari PT, Sopian K, Salehipour H, Sol. Energy, 188, 83 (2019)
Selimefendigil F, Bayrak F, Oztop HF, Renew. Energy, 125, 193 (2018)
Selimefendigil F, Öztop HF, Renew. Energy, 162, 1076 (2020)
Khanmohammadi S, Saadat-Targhi M, Ahmed FW, Afrand M, Int. J. Hydrog. Energy, 45, 6934 (2020)
Sheikholeslami M, Arabkoohsar A, Jafaryar M, J. Energy Resour. Technol.-Trans. ASME, 142(11), 1 (2020)
Wang X, Yan X, Gao N, Chen G, J. Therm. Sci., 29(6), 1504 (2020)
Qi C, Luo T, Liu M, Fan F, Yan Y, Energy Conv. Manag., 197, 111877 (2019)
Selimefendigil F, Öztop HF, J. Clean Prod., 279, 123426 (2021)
Qiu L, Sang D, Feng Y, Huang H, Zhang X, Chem. Eng. Process., 151, 107915 (2020)
Qi C, Li K, Li C, Shang B, Yan Y, Int. Commun. Heat Mass Transf., 114, 104589 (2020)
Pourmehran O, Rahimi-Gorji M, Hatami M, Sahebi S, Domairry G, J. Taiwan Inst. Chem. Eng., 55, 49 (2015)
Sheikholeslami M, Bhatti MM, Shafee A, Li Z, Comput. Thermal. Scien., 11(5), 475 (2019)
Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y, Int. J. Heat Mass Transf., 126, 156 (2018)
Qi C, Chen T, Tu J, Wang Y, Korean J. Chem. Eng., 37(12), 2104 (2020)
Izadi M, Naderi S, J. Mech. Eng., 49(4), 9 (2019)
Wang X, Yan Y, Meng X, Chen G, Appl. Therm. Eng., 157, 113761 (2019)
Selimefendigil F, Öztop HF, Int. J. Heat Mass Transf., 178, 121623 (2021)
Wang X, Wright E, Gao N, Lin Y, Int. J. Therm. Sci., 1383, 1 (2020)
Nguyen Q, Sedeh SN, Toghraie D, Kalbasi R, Karimipour A, J. Braz. Soc. Mech. Sci. Eng., 42(9), 1 (2020)
Ghaneifar M, Raisi A, Ali HM, Talebizadehsardari P, J. Therm. Anal. Calorim., 143(3), 2761 (2021)
Yan SR, Kalbasi R, Toghraie D, Tian XX, Nguyen Q, Karimipour A, Math. Meth. Appl. Sci., 46, 6576 (2020)
Pourfattah F, Arani AAA, Babaie MR, Nguyen HM, Asadi A, Int. J. Heat Mass Transf., 143, 118518 (2019)
Sajjadi H, Delouei AA, Izadi M, Mohebbi R, Int. J. Heat Mass Transf., 132, 1087 (2019)
Sheremet MA, Rashidi MM, Alex. Eng. J., 60(3), 2769 (2021)
Sarafraz M, Arjomandi M, Int. Commun. Heat Mass Transf., 94, 39 (2018)
Selimefendigil F, Öztop HF, Int. J. Heat Mass Transf., 129, 265 (2019)
Naphon P, Wiriyasart S, Arisariyawong T, Nakharintr L, Int. J. Heat Mass Transf., 131, 329 (2019)
Qi C, Li K, Li C, CIESC J., 72(4), 2006 (2021)
Cheng NS, Law AWK, Powder Technol., 129, 156 (2003)
Barletta A, Int. J. Heat Mass Transf., 52(21), 5266 (2009)
Hamilton RL, Crosser O, Ind. Eng. Chem. Fundam., 1(3), 187 (1962)
Kumar S, Prasad SK, Banerjee J, Appl. Math. Model., 34(3), 573 (2010)
Gong J, Min C, Qi C, Wang E, Tian L, Int. Commun. Heat Mass Transf., 43, 53 (2013)
Qi C, Tu J, Ding Z, Wang Y, Sun L, Wang C, Asia-Pac. J. Chem. Eng., e2668, 1 (2021)
Zhao N, Guo L, Qi C, Chen T, Cui X, Energy Conv. Manag., 181, 235 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로