Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 7, 2021
Accepted December 21, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Highly elastic aerogel derived from spent coffee grounds as oil removal adsorbent
1School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China 2Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, China 3CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
tanfz@dlpu.edu.cn
Korean Journal of Chemical Engineering, June 2022, 39(6), 1517-1523(7), 10.1007/s11814-021-1052-5
Download PDF
Abstract
In the face of increasing environmental pollution, aerogels have emerged as valuable materials for potential oil/water separation. However, many of the currently developed aerogels have unsatisfactory compressibility, high cost and a single hydrophobic modification method, which limits larger-scale application. In this work, a type of aerogel with compressible, inexpensive, and fully biodegradable features was designed via a novel zirconium chloride modification strategy. Typically, a series of aerogels (HCSW-1, HCSW-2, and HCSW-3) were readily prepared from a mixture of spent coffee grounds, waste paper and sodium alginate. The prepared aerogels exhibited good elasticity, low density (0.024 g cm-3), high porosity (98.3%), efficient oil/water separation and good oil uptake (23-44 times of its weight). In addition, the as-prepared aerogels can be easily recycled several times, thus meeting the demand of actual oil/water separation. Such prominent results provide a new perspective for the development of efficient hydrophobic aerogels in the treatment of offshore oil spills and industrial wastewater.
References
Rostami S, Abessi O, Amini-Rad H, Mar. Pollut. Bull., 138, 302 (2019)
Soliman EM, Ahmed SA, Fadl AA, J. Environ. Health Sci. Eng., 18, 79 (2020)
Wang Y, Lee K, Liu D, Guo J, Han Q, Liu X, Zhang J, Environ. Pollut., 263, 114343 (2020)
Li Y, Liu X, Cai W, Cao Y, Sun Y, Tan F, Korean J. Chem. Eng., 35, 1119 (2018)
Zhuang GL, Wu SY, Lo YC, Chen YC, Tung KL, Tseng HH, J. Membr. Sci., 605, 118091 (2020)
Hashemi F, Hashemi H, Shahbazi M, Dehghani M, Hoseini M, Shafeie A, Water Resour. Ind., 23, 100123 (2020)
Ozgun H, Ersahin ME, Erdem S, Atay B, Kose B, Kaya R, Altinbas M, Sayili S, Hoshan P, Atay D, Eren E, Kinaci C, Koyuncu I, J. Chem. Technol. Biotechnol., 88, 1576 (2013)
Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S, J. Porous Mat., 10, 159 (2003)
Ma M, Chen Y, Zhao X, Tan F, Wang Y, Cao Y, Cai W, J. Saudi Chem. Soc., 24, 915 (2020)
Wang L, Shi C, Wang L, Pan L, Zhang X, Zou JJ, Nanoscale, 12, 4790 (2020)
Bayat A, Aghamiri SF, Moheb A, Vakili-Nezhaad GR, Chem. Eng. Technol., 28, 1525 (2005)
Teichner SJ, Nicolaon GA, Vicarini MA, Gardes GEE, Adv. Colloid Interface Sci., 5, 245 (1976)
Yogapriya R, Kasibhatta KRD, Acs Appl. Nano Mater., 3, 5816 (2020)
Kim J, Kim H, Baek G, Lee C, Waste Manage., 60, 322 (2017)
Arulrajah A, Kua TA, Suksiripattanapong C, Horpibulsuk S, Shen JS, J. Clean Prod., 162, 1491 (2017)
Yue X, Zhang T, Yang D, Qiu F, Li Z, J. Clean Prod., 199, 411 (2018)
Zhang L, Chen H, Sun J, Shen J, Chem. Mater., 19, 948 (2007)
Xu Z, Zhou H, Jiang X, Li J, Huang F, Iet Nanobiotechnol., 11, 929 (2017)
Li L, Hu T, Sun H, Zhang J, Wang A, Acs Appl. Mater. Interfaces, 9, 18001 (2017)
Wang C, He GH, Cao JL, Fan LH, Cai WQ, Yin YH, Acs Appl. Polym. Mater., 2, 1124 (2020)
Yang J, Xia Y, Xu P, Chen B, Cellulose, 25, 3533 (2018)
Brown PS, Atkinson ODLA, Badyal JPS, Acs Appl. Mater. Interfaces, 6, 7504 (2014)
Zhou L, Xu Z, J. Hazard. Mater., 388, 121804 (2020)
Atabani AE, Shobana S, Mohammed MN, Uguz G, Kumar G, Arvindnarayan S, Aslam M, Al-Muhtaseb AAH, Fuel, 244, 419 (2019)
Belhouchat N, Zaghouane-Boudiaf H, Viseras C, Appl. Clay Sci., 135, 9 (2017)
Wang Y, Feng Y, Yao J, J. Colloid Interface Sci., 533, 182 (2019)
Kim SJ, Moon JB, Kim GH, Ha CS, Polym. Test, 27, 801 (2008)
Cheng Q, Ye D, Chang C, Zhang L, J. Membr. Sci., 525, 1 (2017)
Sehaqui H, Zhou Q, Berglund LA, Compos. Sci. Technol., 71, 1593 (2011)
Fumagalli M, Ouhab D, Boisseau SM, Heux L, Biomacromolecules, 14, 3246 (2013)
Zhou L, Zhai S, Chen Y, Xu Z, Polymer, 11, 712 (2019)
Korhonen JT, Kettunen M, Ras RHA, Ikkala O, Acs Appl. Mater. Interfaces, 3, 1813 (2011)
Soliman EM, Ahmed SA, Fadl AA, J. Environ. Health Sci. Eng., 18, 79 (2020)
Wang Y, Lee K, Liu D, Guo J, Han Q, Liu X, Zhang J, Environ. Pollut., 263, 114343 (2020)
Li Y, Liu X, Cai W, Cao Y, Sun Y, Tan F, Korean J. Chem. Eng., 35, 1119 (2018)
Zhuang GL, Wu SY, Lo YC, Chen YC, Tung KL, Tseng HH, J. Membr. Sci., 605, 118091 (2020)
Hashemi F, Hashemi H, Shahbazi M, Dehghani M, Hoseini M, Shafeie A, Water Resour. Ind., 23, 100123 (2020)
Ozgun H, Ersahin ME, Erdem S, Atay B, Kose B, Kaya R, Altinbas M, Sayili S, Hoshan P, Atay D, Eren E, Kinaci C, Koyuncu I, J. Chem. Technol. Biotechnol., 88, 1576 (2013)
Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S, J. Porous Mat., 10, 159 (2003)
Ma M, Chen Y, Zhao X, Tan F, Wang Y, Cao Y, Cai W, J. Saudi Chem. Soc., 24, 915 (2020)
Wang L, Shi C, Wang L, Pan L, Zhang X, Zou JJ, Nanoscale, 12, 4790 (2020)
Bayat A, Aghamiri SF, Moheb A, Vakili-Nezhaad GR, Chem. Eng. Technol., 28, 1525 (2005)
Teichner SJ, Nicolaon GA, Vicarini MA, Gardes GEE, Adv. Colloid Interface Sci., 5, 245 (1976)
Yogapriya R, Kasibhatta KRD, Acs Appl. Nano Mater., 3, 5816 (2020)
Kim J, Kim H, Baek G, Lee C, Waste Manage., 60, 322 (2017)
Arulrajah A, Kua TA, Suksiripattanapong C, Horpibulsuk S, Shen JS, J. Clean Prod., 162, 1491 (2017)
Yue X, Zhang T, Yang D, Qiu F, Li Z, J. Clean Prod., 199, 411 (2018)
Zhang L, Chen H, Sun J, Shen J, Chem. Mater., 19, 948 (2007)
Xu Z, Zhou H, Jiang X, Li J, Huang F, Iet Nanobiotechnol., 11, 929 (2017)
Li L, Hu T, Sun H, Zhang J, Wang A, Acs Appl. Mater. Interfaces, 9, 18001 (2017)
Wang C, He GH, Cao JL, Fan LH, Cai WQ, Yin YH, Acs Appl. Polym. Mater., 2, 1124 (2020)
Yang J, Xia Y, Xu P, Chen B, Cellulose, 25, 3533 (2018)
Brown PS, Atkinson ODLA, Badyal JPS, Acs Appl. Mater. Interfaces, 6, 7504 (2014)
Zhou L, Xu Z, J. Hazard. Mater., 388, 121804 (2020)
Atabani AE, Shobana S, Mohammed MN, Uguz G, Kumar G, Arvindnarayan S, Aslam M, Al-Muhtaseb AAH, Fuel, 244, 419 (2019)
Belhouchat N, Zaghouane-Boudiaf H, Viseras C, Appl. Clay Sci., 135, 9 (2017)
Wang Y, Feng Y, Yao J, J. Colloid Interface Sci., 533, 182 (2019)
Kim SJ, Moon JB, Kim GH, Ha CS, Polym. Test, 27, 801 (2008)
Cheng Q, Ye D, Chang C, Zhang L, J. Membr. Sci., 525, 1 (2017)
Sehaqui H, Zhou Q, Berglund LA, Compos. Sci. Technol., 71, 1593 (2011)
Fumagalli M, Ouhab D, Boisseau SM, Heux L, Biomacromolecules, 14, 3246 (2013)
Zhou L, Zhai S, Chen Y, Xu Z, Polymer, 11, 712 (2019)
Korhonen JT, Kettunen M, Ras RHA, Ikkala O, Acs Appl. Mater. Interfaces, 3, 1813 (2011)