ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 19, 2021
Accepted November 9, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

In situ soft templated synthesis of polyfluorene-molybdenum oxide (PF-MoO3) nanocomposite: A nanostructure glucose sensor

Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India 1Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India 2School of Nanoscience and Technology, Shivaji University, Kolhapur-416004, Maharashtra, India 3Polymer Energy Materials Laboratory, School of Advance Chemical Engineering, Chonnam National University, 61186, Korea
snt_chem@unishivaji.ac.in
Korean Journal of Chemical Engineering, June 2022, 39(6), 1604-1613(10), 10.1007/s11814-021-1010-2
downloadDownload PDF

Abstract

A polyfluorene-molybdenum oxide nanocomposite (PF-MoO3) was successfully prepared in swollen liquid crystalline (SLC) lamellar phase. The morphology, shape, and structure of the nanocomposite are characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The obtained PF-MoO3 material was loaded over a glassy carbon electrode (GCE). The PF-MoO3/GCE was employed as a working electrode for the detection of glucose by differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques. The determined limits of detection (LOD) and the limits of quantification (LOQ) from CV were 7.90×10-5 M and 2.63×10-5 M, respectively. The calculated sensitivity of the PF-MoO3 electrode material for glucose was estimated to be 4.29×104 μA L mol-1 cm-2. The values of LOD and LOQ obtained from DPV data were 7.05×10-5 M and 2.35×10-5 M, respectively. The results were in agreement with CV observations. Similarly, the glucose sensitivity for the PF-MoO3/GCE by DPV technique was 5.18×103 μA L mol-1 cm-2. In this research, we have developed a highly sensitive glucose sensor by modification of the GCE electrode surface with PF-MoO3 nanocomposite.

References

Zhang Y, Ma Y, Li Y, Zhu W, Wei Z, Sun J, Li T, Wang J, Appl. Surf. Sci., 505, 144636 (2020)
Christwardana M, Ji J, Chung Y, Kwon Y, Korean J. Chem. Eng., 34, 2916 (2017)
Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X, Microchim. Acta, 180, 161 (2013)
Li M, Liu L, Xiong Y, Liu X, Nsabimana A, Bo X, Guo L, Sens. Actuators B-Chem., 207, 614 (2015)
Toghill KE, Compton RG, Int. J. Electrochem. Sci., 5, 1246 (2010)
Zhu ZG, Garcia-Gancedo L, Flewitt AJ, Xie HQ, Moussy F, Milne WI, Sensors, 12, 5996 (2012)
Pumera M, Loo A, Trends Anal. Chem., 61, 49 (2014)
Balendhran S, Walia S, Nili H, Ou J, Zhuiykov S, Kaner RB, Sriram S, Bhaskaran M, Kalantar-zadeh K, Adv. Funct. Mater., 23, 3952 (2013)
Reddy VM, Sravani B, Łuczak T, Mallikarjunad K, Madhavi G, Colloids Surf. A: Physicochem. Eng. Asp., 608, 125533 (2021)
Zhang L, Li H, Ni Y, Li J, Liao K, Zhao G, Electrochem. Commun., 11, 812 (2009)
Xue Y, Tian B, Wang M, Zhai T, Li R, Tan L, Colloids Surf. A: Physicochem. Eng. Asp., 591, 124549 (2020)
Meng F, Shi W, Sun Y, Zhu X, Wua G, Ruan C, Liu X, Ge D, Biosens. Bioelectron., 42, 141 (2013)
Azharudeen AM, Karthiga R, Rajarajan M, Suganthi A, Microchem J., 157, 105006 (2020)
Shakir I, Sarfraz M, Electrochim. Acta, 147, 380 (2014)
Wang Y, Zhu Y, Xing Z, Qian Y, Int. J. Electrochem. Sci., 8, 9851 (2013)
Murugesan D, Moulaee K, Neri G, Ponpandian N, Viswanathan C, Nanotechnology, 30, 265501 (2019)
Lei W, Si W, Xu Y, Gu Z, Hao Q, Microchim. Acta, 181, 707 (2014)
Li L, Qiu H, Wang Y, Jiang J, Xu F, J. Rare Earths, 26, 558 (2008)
Mort J, Science, 208, 819 (1980)
Zhang L, Yuan S, Lu X, Microchim. Acta, 181, 365 (2014)
Xie J, Yang X, Zhou S, Wang D, ACS Nano., 5, 9225 (2011)
Mehdinia A, Khani H, Mozaffari S, Microchim. Acta, 181, 89 (2014)
Mostafaei A, Nasirpouri F, Prog. Org. Coat., 77, 146 (2014)
Jiang F, Li W, Zou R, Liu Q, Xu K, An L, Hu J, Nano Energy, 7, 72 (2014)
Li S, Wu D, Cheng C, Wang J, Zhang F, Su Y, Feng X, Angew. Chem.-Int. Edit., 52, 12105 (2013)
Neher D, Macromol. Rapid Commun., 22, 1365 (2001)
Scherf U, List EJW, Adv. Mater., 14, 477 (2002)
Surendran G, Tokumoto M, dos Santos EP, Remita H, Ramos L, Kooyman P, Prouzet J, Chem. Mater., 17, 1505 (2005)
Tawade A, Kumar DM, Talele P, Sharma KK, Tayade S, J. Electron. Mater., 48, 7747 (2019)
Chithambararaj A, Bose A, J. Nanotechnol., 2, 585 (2011)
Aljabali A, Barclay J, George J, Lomonossoffa B, Evans P, Dalton Trans., 39, 7569 (2010)
Zakharova GS, Schmidt C, Ottmann A, Mijowska E, Klingeler R, J. Solid State Electrochem., 22, 3651 (2018)
Farial G, Plivelic T, Cossiello R, Multitechnique A, J. Phys. Chem. B, 113, 11403 (2009)
Jumali M, Al-Asbahi B, Yap C, Salleh M, Alsalhi M, Thin Solid Films, 524, 257 (2012)
Mika T, Frank G, Ullrich S, Macromolecules, 48, 5244 (2015)
Sims M, Bradely DDC, Ariu M, Koeberg M, Asimakis A, Grell M, Lidzey DG, Adv. Funct. Mater., 14, 765 (2004)
Li K, Pan J, Feng S, Wenqing A, Pu K, Liu Y, Liu B, Adv. Funct. Mater., 19, 3535 (2009)
Dhanavel SE, Nivethaa AK, Dhanapal K, Gupta VK, Narayanan V, Stephena A, RSC Adv., 6, 28871 (2016)
Rozenberg BA, Tenne R, Prog. Polym. Sci, 33, 40 (2008)
Chithambararaj A, Bose A, J. Alloy. Compd., 509, 8105 (2011)
Zhao W, Cao T, White JM, Adv. Funct. Mater., 14, 783 (2004)
Marimuthu T, Mohamad S, Alias Y, Synth. Met., 207, 35 (2015)
Kamble B, Naikwade M, Garadkar K, Mane R, Sharma K, Ajalkar B, Tayade S, J. Mater. Sci. -Mater. Electron., 30, 13984 (2019)
Li X, Du X, Sens. Actuators B-Chem., 239, 536 (2017)
Anderson K, Poulter B, Dudgeon J, Li SE, Ma X, Sensors, 17, 1807 (2017)
Azharudeen AM, Karthiga R, Rajarajan M, Suganthi A, Microchem J., 157, 105006 (2020)
Sharma M, Gangan A, Chakraborty B, Rout CS, J. Phys. D-Appl. Phys., 50, 475401 (2017)
Zhai YJ, Li JH, Chu XY, Xu MZ, Jin FJ, Li X, Fang X, Wei ZP, Wang XH, J. Alloy. Compd., 672, 600 (2016)
Kannan P, Chen F, Jiang H, Wang H, Wang R, Subramanian P, Ji S, Analyst, 144, 4925 (2019)
Ren H, Yan L, Liu M, Wang Y, Liu X, Liu C, Liu K, Zeng L, Liu A, Sens. Actuators B-Chem., 296, 126517 (2019)
Fang L, Wang F, Chen Z, Qiu Y, Zhai T, Hu M, Zhang C, Huang K, Talanta, 167, 593 (2017)
Zhang Z, Vieira D, Barralet JE, Merle G, 2D Mater., 7, 025044 (2014)
Shahnavaz Z, Lorestani F, Alias Y, Woi PM, Appl. Surf. Sci., 317, 622 (2014)
Lyons M, Keeley GP, Chem. Commun., 22, 2529 (2008)
Hui N, Wang S, Xie H, Xu S, Niu S, Luo X, Sens. Actuators B-Chem., 221, 606 (2015)
Kumar AS, Chen PY, Chien SH, Zen JM, Electroanalysis, 3, 17 (2005)
Park S, Boo H, Dong T, Anal. Chim. Acta, 556, 46 (2006)
Largeaud F, Kokoh KB, Beden B, Lamy CJ, Electroanal. Chem., 397, 261 (1995)
Ernst S, Heitbaum J, Hamann CH, Bunsenges B, Phys. Chem., 84, 50 (1980)
Hareesha N, Manjunatha JG, J. Iran Chem. Soc., 17, 1507 (2020)
Bard A, Faulkner L, Electrochemical methods: fundamentals and applications, 2nd Edition, John Wiley, New York (2001).
Kamble BB, Tawade AK, Kamble P, Padavi MN, Sharma KK, Ajalkar BD, Tayade SN, Russian J. Electrochem., 56, 766 (2020)
Raziq A, Tariq M, Hussian R, Mehmood M, Khan MS, Hassan A, Chem. Select., 2, 9711 (2017)
Kamble BB, Ajalkar BD, Tawade AK, Sharma KK, Mali SS, Hong CK, Bathula C, Kadam AN, Tayade SN, J. Mol. Liq., 324, 115119 (2021)
Mukherjee P, Roy PS, Bhattacharya SK, Int. J. Hydrog. Energy, 40, 13357 (2015)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로