Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 6, 2021
Accepted December 12, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Performance enhancement of alkaline organic redox flow battery using catalyst including titanium oxide and Ketjenblack
1Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea 2Institute of Energy and Process Systems Engineering (InES), Technische Universität Braunschweig, Langer Kamp 19b, 38106 Braunschweig, Germany 3Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea
d.schroeder@tu-braunschweig.de
Korean Journal of Chemical Engineering, June 2022, 39(6), 1624-1631(8), 10.1007/s11814-021-1040-9
Download PDF
Abstract
Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO2/KB-CF) is used as negative electrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueous organic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO2/KB-CF than with pristine CF (anodic current density of 13.3 and 19.8mA?cm-2, and cathodic current density of -15.7 and -21.9mA?cm-2 with pristine CF and TiO2/KB-CF), while the reaction reversibility of NQSO is also enhanced in TiO2/KB-CF (ratio of peak current density is 0.84 and 0.9 with pristine CF and TiO2/KB-CF). These results are due to the hydrophilic and conductive properties of the TiO2/KB catalyst. TiO2 can hold many hydroxyl groups that are hydrophilic and electro-active group, while KB is a conductive material that induces a fast electron transfer. With these benefits, the charge transfer resistance of the electrode is reduced from 1.8Ω with pristine CF to 1.5Ω with TiO2/KB-CF. In AORFB tests using NQSO and potassium ferrocyanide under alkaline supporting electrolyte, energy efficiency increased from 58% (pristine CF) to 61% (TiO2/KB-CF) with a low capacity loss rate of 0.006 Ah?L-1 per cycle and the cross-over rate of active materials during cycling of AORFB was very low.
Keywords
References
Niaz H, MansourLakouraj M, Liu J, Korean J. Chem. Eng., 38, 1617 (2021)
Yadav D, Kumar S, Verma OP, Pachauri N, Sharma V, Korean J. Chem. Eng., 38, 906 (2021)
Karim MR, Han TH, Sawant SY, Shim JJ, Lee MY, Kim WK, Kim JS, Cho MH, Korean J. Chem. Eng., 37, 1241 (2020)
Seo JS, Na BK, Korean J. Chem. Eng., 38, 1826 (2021)
Kear G, Shah AA, Walsh FC, Int. J. Energy Res., 36, 1105 (2012)
Nulu A, Nulu V, Moon JS, Sohn KY, Korean J. Chem. Eng., 38, 1923 (2021)
Lim EH, Chun JY, Jo CS, Hwang JK, Korean J. Chem. Eng., 38, 227 (2021)
Hwang M, Jeong JS, Lee JC, Yu SI, Jung HS, Cho BS, Kim KY, Korean J. Chem. Eng., 38, 454 (2021)
Fan L, Sun P, Yang L, Xu Z, Han J, Korean J. Chem. Eng., 37, 166 (2020)
Kim JH, Mo SI, Park GS, Yun JW, Korean J. Chem. Eng., 38, 1834 (2021)
Bahoosh R, Jafari M, Bahrainian SS, Korean J. Chem. Eng., 38, 1703 (2021)
Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z, Adv. Energy Mater., 1, 394 (2011)
Christwardana M, Chung Y, Kwon Y, Korean J. Chem. Eng., 34, 3009 (2017)
Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q, J. Appl. Electrochem., 41, 1137 (2011)
Noack J, Roznyatovskaya N, Herr T, Fischer P, Angew. Chem.-Int. Edit., 54, 9776 (2015)
Alotto P, Guarnieri M, Moro F, Renew. Sust. Energ. Rev., 29, 325 (2014)
Shin SH, Yun SH, Moon SH, RSC Adv., 3, 9095 (2013)
Liu Q, Sleightholme AE, Shinkle AA, Li Y, Thompson LT, Electrochem. Commun., 11, 2312 (2009)
Lee W, Kwon BW, Jung M, Serhiichuk D, Henkensmeier D, Kwon Y, J. Power Sources, 439, 227079 (2019)
Pham HTT, Jo C, Lee J, Kwon Y, RSC Adv., 6, 17574 (2016)
Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334 (2017)
Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165, A1388 (2018)
Elgammal RA, Tang Z, Sun CN, Lawton J, Zawodzinski TA Jr., Electrochim. Acta, 237, 1 (2017)
Jung HY, Cho MS, Sadhasivam T, Kim JY, Roh SH, Kwon Y, Solid State Ion., 324, 69 (2018)
Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31, 2081 (2014)
Sun CN, Tang Z, Belcher C, Zawodzinski TA, Fujimoto C, Electrochem. Commun., 43, 63 (2014)
Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799 (2017)
Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z, ChemSusChem, 4, 1388 (2011)
Choi C, Kim S, Kim R, Choi Y, Kim S, Jung HY, Yang JH, Kim HT, Renew. Sust. Energ. Rev., 69, 263 (2017)
Wei L, Zhao TS, Zeng L, Zeng YK, Jiang HR, J. Power Sources, 341, 318 (2017)
Di Blasi A, Busaccaa C, Di Blasia O, Briguglioa N, Squadritoa G, Antonuccia V, Appl. Energy, 190, 165 (2017)
González Z, Sánchez A, Blanco C, Granda M, Menéndez R, Santamaría R, Electrochem. Commun., 13, 1379 (2011)
Vijayakumar M, Li L, Graff G, Liu J, Zhang H, Yang Z, Hu JZ, J. Power Sources, 196, 3669 (2011)
Chung Y, Noh C, Kwon Y, J. Power Sources, 438, 227063 (2019)
Noh C, Kwon BW, Chung Y, Kwon Y, J. Power Sources, 406, 26 (2018)
Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187 (2018)
Lee W, Park G, Chang D, Kwon Y, Korean J. Chem. Eng., 37, 2326 (2020)
Chu C, Kwon BW, Lee W, Kwon Y, Korean J. Chem. Eng., 36, 1732 (2019)
DeBruler C, Hu B, Moss J, Luo J, Liu TL, ACS Energy Lett., 3, 663 (2018)
Winsberg J, Stolze C, Muench S, Liedl F, Hager MD, Schubert US, ACS Energy Lett., 1, 976 (2016)
Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US, Angew. Chem.-Int. Edit., 56, 686 (2017)
Lee W, Park G, Kim Y, Chang D, Kwon Y, Chem. Eng. J., 398, 125610 (2020)
Wei X, Pan W, Duan W, Hollas A, Yang Z, Li B, Nie Z, Liu J, Reed D, Wang W, Sprenkle V, ACS Energy Lett., 2, 2187 (2017)
Lee W, Kwon BW, Kwon Y, ACS Appl. Mater. Interfaces, 10, 36882 (2018)
Lin K, Gómez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG, Nat. Energy, 1, 1 (2016)
Lee W, Kwon Y, Korean Chem. Eng. Res., 57, 695 (2019)
Liu T, Wei Z, Nie Z, Sprenkle V, Wang W, Adv. Energy Mater., 6, 1501449 (2016)
Park G, Lee W, Kwon Y, Korean Chem. Eng. Res., 57, 868 (2019)
Hofmann JD, Pfanschilling FL, Krawczyk N, Geigle P, Hong L, Schmalisch S, Wegner HA, Moleenhauer D, Janek J, Schröder D, Chem. Mater., 30, 762 (2018)
Yang B, Hoober-Burkhardt L, Wang F, Prakash GS, Narayanan SR, J. Electrochem. Soc., 161, A1371 (2014)
Hoober-Burkhardt L, Krishnamoorthy S, Yang B, Murali A, Nirmalchandar A, Prakash GS, Narayanan SR, J. Electrochem. Soc., 164, A600 (2017)
Permatasari A, Lee W, Kwon Y, Chem. Eng. J., 383, 123085 (2020)
Hofmann JD, Schmalisch S, Schwan S, Hong L, Wegner HA, Mollenhauer D, Janek J, Schröder D, Chem. Mater., 32, 3427 (2020)
Lin K, Chen Q, Gerhardt MR, Tong L, Kim SB, Eisenach L, Valle AW, Hardee D, Gordon RG, Aziz MJ, Marshak MP, Science, 349, 1529 (2015)
Schwan S, Schröder D, Wegner HA, Janek J, Mollenhauer D, ChemSusChem, 13, 5480 (2020)
Gerhardt MR, Tong L, Gómez‐Bombarelli R, Chen Q, Marshak MP, Galvin CJ, Aspuru-Guzik AA, Gordon RG, Aziz MJ, Adv. Energy Mater., 7, 1601488 (2017)
Lee W, Park G, Kwon Y, Chem. Eng. J., 386, 123985 (2020)
Lee W, Permatasari A, Kwon BW, Kwon Y, Chem. Eng. J., 358, 1438 (2019)
Lee W, Permatasari A, Kwon Y, J. Mater. Chem. C, 8, 5727 (2020)
Chu C, Lee W, Kwon Y, Korean Chem. Eng. Res., 57, 847 (2019)
Lee W, Chung KY, Kwon Y, Korean Chem. Eng. Res., 57, 239 (2019)
Lv Y, Han C, Zhu Y, Zhang T, Yao S, He Z, Dai L, Wang L, J. Mater. Sci. Technol., 75, 96 (2021)
Ryu J, Park M, Cho J, J. Electrochem. Soc., 163, A5144 (2015)
Yang D, Guo Y, Tang H, Wang Y, Yang D, Ming P, Zhang C, Li B, Zhu S, Int. J. Hydrog. Energy, 46, 33300 (2021)
Carney TJ, Collins SJ, Moore JS, Brushett FR, Chem. Mater., 29, 4801 (2017)
Kuroda S, Tobori N, Sakuraba M, Sato Y, J. Power Sources, 119, 924 (2003)
Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K, Langmuir, 14, 5918 (1998)
Al-Yasiri M, Park J, Appl. Energy, 222, 530 (2018)
Yadav D, Kumar S, Verma OP, Pachauri N, Sharma V, Korean J. Chem. Eng., 38, 906 (2021)
Karim MR, Han TH, Sawant SY, Shim JJ, Lee MY, Kim WK, Kim JS, Cho MH, Korean J. Chem. Eng., 37, 1241 (2020)
Seo JS, Na BK, Korean J. Chem. Eng., 38, 1826 (2021)
Kear G, Shah AA, Walsh FC, Int. J. Energy Res., 36, 1105 (2012)
Nulu A, Nulu V, Moon JS, Sohn KY, Korean J. Chem. Eng., 38, 1923 (2021)
Lim EH, Chun JY, Jo CS, Hwang JK, Korean J. Chem. Eng., 38, 227 (2021)
Hwang M, Jeong JS, Lee JC, Yu SI, Jung HS, Cho BS, Kim KY, Korean J. Chem. Eng., 38, 454 (2021)
Fan L, Sun P, Yang L, Xu Z, Han J, Korean J. Chem. Eng., 37, 166 (2020)
Kim JH, Mo SI, Park GS, Yun JW, Korean J. Chem. Eng., 38, 1834 (2021)
Bahoosh R, Jafari M, Bahrainian SS, Korean J. Chem. Eng., 38, 1703 (2021)
Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z, Adv. Energy Mater., 1, 394 (2011)
Christwardana M, Chung Y, Kwon Y, Korean J. Chem. Eng., 34, 3009 (2017)
Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q, J. Appl. Electrochem., 41, 1137 (2011)
Noack J, Roznyatovskaya N, Herr T, Fischer P, Angew. Chem.-Int. Edit., 54, 9776 (2015)
Alotto P, Guarnieri M, Moro F, Renew. Sust. Energ. Rev., 29, 325 (2014)
Shin SH, Yun SH, Moon SH, RSC Adv., 3, 9095 (2013)
Liu Q, Sleightholme AE, Shinkle AA, Li Y, Thompson LT, Electrochem. Commun., 11, 2312 (2009)
Lee W, Kwon BW, Jung M, Serhiichuk D, Henkensmeier D, Kwon Y, J. Power Sources, 439, 227079 (2019)
Pham HTT, Jo C, Lee J, Kwon Y, RSC Adv., 6, 17574 (2016)
Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334 (2017)
Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165, A1388 (2018)
Elgammal RA, Tang Z, Sun CN, Lawton J, Zawodzinski TA Jr., Electrochim. Acta, 237, 1 (2017)
Jung HY, Cho MS, Sadhasivam T, Kim JY, Roh SH, Kwon Y, Solid State Ion., 324, 69 (2018)
Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31, 2081 (2014)
Sun CN, Tang Z, Belcher C, Zawodzinski TA, Fujimoto C, Electrochem. Commun., 43, 63 (2014)
Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799 (2017)
Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z, ChemSusChem, 4, 1388 (2011)
Choi C, Kim S, Kim R, Choi Y, Kim S, Jung HY, Yang JH, Kim HT, Renew. Sust. Energ. Rev., 69, 263 (2017)
Wei L, Zhao TS, Zeng L, Zeng YK, Jiang HR, J. Power Sources, 341, 318 (2017)
Di Blasi A, Busaccaa C, Di Blasia O, Briguglioa N, Squadritoa G, Antonuccia V, Appl. Energy, 190, 165 (2017)
González Z, Sánchez A, Blanco C, Granda M, Menéndez R, Santamaría R, Electrochem. Commun., 13, 1379 (2011)
Vijayakumar M, Li L, Graff G, Liu J, Zhang H, Yang Z, Hu JZ, J. Power Sources, 196, 3669 (2011)
Chung Y, Noh C, Kwon Y, J. Power Sources, 438, 227063 (2019)
Noh C, Kwon BW, Chung Y, Kwon Y, J. Power Sources, 406, 26 (2018)
Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187 (2018)
Lee W, Park G, Chang D, Kwon Y, Korean J. Chem. Eng., 37, 2326 (2020)
Chu C, Kwon BW, Lee W, Kwon Y, Korean J. Chem. Eng., 36, 1732 (2019)
DeBruler C, Hu B, Moss J, Luo J, Liu TL, ACS Energy Lett., 3, 663 (2018)
Winsberg J, Stolze C, Muench S, Liedl F, Hager MD, Schubert US, ACS Energy Lett., 1, 976 (2016)
Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US, Angew. Chem.-Int. Edit., 56, 686 (2017)
Lee W, Park G, Kim Y, Chang D, Kwon Y, Chem. Eng. J., 398, 125610 (2020)
Wei X, Pan W, Duan W, Hollas A, Yang Z, Li B, Nie Z, Liu J, Reed D, Wang W, Sprenkle V, ACS Energy Lett., 2, 2187 (2017)
Lee W, Kwon BW, Kwon Y, ACS Appl. Mater. Interfaces, 10, 36882 (2018)
Lin K, Gómez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG, Nat. Energy, 1, 1 (2016)
Lee W, Kwon Y, Korean Chem. Eng. Res., 57, 695 (2019)
Liu T, Wei Z, Nie Z, Sprenkle V, Wang W, Adv. Energy Mater., 6, 1501449 (2016)
Park G, Lee W, Kwon Y, Korean Chem. Eng. Res., 57, 868 (2019)
Hofmann JD, Pfanschilling FL, Krawczyk N, Geigle P, Hong L, Schmalisch S, Wegner HA, Moleenhauer D, Janek J, Schröder D, Chem. Mater., 30, 762 (2018)
Yang B, Hoober-Burkhardt L, Wang F, Prakash GS, Narayanan SR, J. Electrochem. Soc., 161, A1371 (2014)
Hoober-Burkhardt L, Krishnamoorthy S, Yang B, Murali A, Nirmalchandar A, Prakash GS, Narayanan SR, J. Electrochem. Soc., 164, A600 (2017)
Permatasari A, Lee W, Kwon Y, Chem. Eng. J., 383, 123085 (2020)
Hofmann JD, Schmalisch S, Schwan S, Hong L, Wegner HA, Mollenhauer D, Janek J, Schröder D, Chem. Mater., 32, 3427 (2020)
Lin K, Chen Q, Gerhardt MR, Tong L, Kim SB, Eisenach L, Valle AW, Hardee D, Gordon RG, Aziz MJ, Marshak MP, Science, 349, 1529 (2015)
Schwan S, Schröder D, Wegner HA, Janek J, Mollenhauer D, ChemSusChem, 13, 5480 (2020)
Gerhardt MR, Tong L, Gómez‐Bombarelli R, Chen Q, Marshak MP, Galvin CJ, Aspuru-Guzik AA, Gordon RG, Aziz MJ, Adv. Energy Mater., 7, 1601488 (2017)
Lee W, Park G, Kwon Y, Chem. Eng. J., 386, 123985 (2020)
Lee W, Permatasari A, Kwon BW, Kwon Y, Chem. Eng. J., 358, 1438 (2019)
Lee W, Permatasari A, Kwon Y, J. Mater. Chem. C, 8, 5727 (2020)
Chu C, Lee W, Kwon Y, Korean Chem. Eng. Res., 57, 847 (2019)
Lee W, Chung KY, Kwon Y, Korean Chem. Eng. Res., 57, 239 (2019)
Lv Y, Han C, Zhu Y, Zhang T, Yao S, He Z, Dai L, Wang L, J. Mater. Sci. Technol., 75, 96 (2021)
Ryu J, Park M, Cho J, J. Electrochem. Soc., 163, A5144 (2015)
Yang D, Guo Y, Tang H, Wang Y, Yang D, Ming P, Zhang C, Li B, Zhu S, Int. J. Hydrog. Energy, 46, 33300 (2021)
Carney TJ, Collins SJ, Moore JS, Brushett FR, Chem. Mater., 29, 4801 (2017)
Kuroda S, Tobori N, Sakuraba M, Sato Y, J. Power Sources, 119, 924 (2003)
Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K, Langmuir, 14, 5918 (1998)
Al-Yasiri M, Park J, Appl. Energy, 222, 530 (2018)