Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 22, 2021
Accepted January 11, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Numerical study of fly ash deposition process in low temperature economizerunder SCR conditions
1School of Mechanical Engineering, Changzhou University, Changzhou 213164, China 2Jiangsu Key Laboratory of Green Process Equipment, Changzhou 213164, Jiangsu, China
zhoufaqi@cczu.edu.cn
Korean Journal of Chemical Engineering, July 2022, 39(7), 1717-1728(12), 10.1007/s11814-022-1066-7
Download PDF
Abstract
After the boiler of a thermal power plant in Nanjing was reformed for denitrification, the clogging of fly ash particles occurred near the support beam of the economizer. The critical speed criterion under different working conditions was constructed by Fluent custom code (UDF), and the change of fly ash deposition on the support beam of the economizer was simulated without ABS and with ABS. At the same time, the influence of the fin layout structure on the movement of smoke and fly ash particles was analyzed. The results show that the stagnation of fly ash particles on the supporting beam is the main cause of sediment clogging. Due to the production of ABS in the process of denitrification, the adhesion of fly ash particles is intensified. At the same time, the fin structure on the support beam hinders the lateral movement of fly ash particles, which causes the growth of clogged fly ash near the support plate. On this basis, an optimization plan for the fin structure is proposed, which improves the flue gas flow conditions and avoids the occurrence of clogging and growth of fly ash.
References
Tsai CJ, Lin JS, Aggarwal SG, Chen DR, Aerosol Sci. Tech., 38, 131 (2004)
Shi Y, Shu H, Zhang Y, Fan H, Zhang Y, Yang L, Fuel Process. Technol., 150, 141 (2016)
Wang Y, Tan H, Dong K, Liu H, Xiao J, Zhang J, Appl. Therm. Eng., 118, 283 (2017)
Lee BE, Fletcher CAJ, Shin SH, Kwon SB, Fuel, 81, 2001 (2002)
Zheng Z, Yang W, Wang H, Zhou A, Cai Y, Zeng G, Xu H, Energy, 220, 119699 (2021)
Han H, He Y, Tao W, Li Y, Int. J. Heat Mass Transf., 72, 210 (2014)
Lu H, Lu L, Jiang Y, Appl. Therm. Eng., 110, 150 (2017)
Mu L, Zhao L, Yin H, Appl. Therm. Eng., 44, 57 (2012)
Hong W, Wang X, Korean J. Chem. Eng., 35, 1517 (2018)
Mu L, Wang S, Zhai Z, Shang Y, Zhao C, Zhao L, Yin H, J. Energy Inst., 93, 1481 (2020)
Wang F, He Y, Tang S, Tong Z, Int. J. Heat Mass Transf., 112, 367 (2017)
Cai Y, Tay K, Zheng Z, Yang W, Wang H, Zeng G, Li Z, Boon SK, Subbaiah P, Appl. Energy, 230, 1447 (2018)
Peter MW, Alan NS, David OL, Larry SM, János MB, Adel FS, Prog. Energy Combust. Sci., 16, 327 (1990)
Brink A, Lindberg D, Hupa M, de Tejada ME, Paneru M, Maier J, Fuel Process. Technol., 141, 210 (2016)
Han H, He Y, Tao W, Li Y, Int. J. Heat Mass Transf., 72, 210 (2014)
Konstandopoulos AG, J. Aerosol Sci., 37, 292 (2006)
El-Batsh H, Haselbacher H, ASME Paper. GT-2002-30600 (2002).
Toscano C, Ahmadi G, J. Adhes., 79, 175 (2010)
Pan Y, Si F, Xu Z, Romero CE, Powder Technol., 210, 150 (2011)
Wang F, He Y, Tong Z, Tang S, Int. J. Heat Mass Transf., 104, 774 (2017)
Tang S, Wang F, Ren Q, He Y, Fuel, 203, 725 (2017)
Zhang Z, Chen Q, Atmos. Environ., 43, 319 (2008)
Sun K, Indoor Built Environ., 20, 300 (2011)
Jiang H, Lu L, Sun K, Build. Environ., 45, 1184 (2009)
Luo M, Zhao L, Li S, J. Chin. Soc. Power Eng., 36, 883 (2016)
Brach RM, Dunn PF, Aerosol Sci. Technol., 16, 51 (1992)
Wang F, He Y, Tang S, Tong Z, Chin. Sci. Bull., 62, 1292 (2017)
Israel R, Rosner DE, Aerosol Sci. Technol., 2, 45 (1982)
Žukauskas AA, Ulinskas RV, Heat Transf. Eng., 6, 19 (1985)
Shi Y, Shu H, Zhang Y, Fan H, Zhang Y, Yang L, Fuel Process. Technol., 150, 141 (2016)
Wang Y, Tan H, Dong K, Liu H, Xiao J, Zhang J, Appl. Therm. Eng., 118, 283 (2017)
Lee BE, Fletcher CAJ, Shin SH, Kwon SB, Fuel, 81, 2001 (2002)
Zheng Z, Yang W, Wang H, Zhou A, Cai Y, Zeng G, Xu H, Energy, 220, 119699 (2021)
Han H, He Y, Tao W, Li Y, Int. J. Heat Mass Transf., 72, 210 (2014)
Lu H, Lu L, Jiang Y, Appl. Therm. Eng., 110, 150 (2017)
Mu L, Zhao L, Yin H, Appl. Therm. Eng., 44, 57 (2012)
Hong W, Wang X, Korean J. Chem. Eng., 35, 1517 (2018)
Mu L, Wang S, Zhai Z, Shang Y, Zhao C, Zhao L, Yin H, J. Energy Inst., 93, 1481 (2020)
Wang F, He Y, Tang S, Tong Z, Int. J. Heat Mass Transf., 112, 367 (2017)
Cai Y, Tay K, Zheng Z, Yang W, Wang H, Zeng G, Li Z, Boon SK, Subbaiah P, Appl. Energy, 230, 1447 (2018)
Peter MW, Alan NS, David OL, Larry SM, János MB, Adel FS, Prog. Energy Combust. Sci., 16, 327 (1990)
Brink A, Lindberg D, Hupa M, de Tejada ME, Paneru M, Maier J, Fuel Process. Technol., 141, 210 (2016)
Han H, He Y, Tao W, Li Y, Int. J. Heat Mass Transf., 72, 210 (2014)
Konstandopoulos AG, J. Aerosol Sci., 37, 292 (2006)
El-Batsh H, Haselbacher H, ASME Paper. GT-2002-30600 (2002).
Toscano C, Ahmadi G, J. Adhes., 79, 175 (2010)
Pan Y, Si F, Xu Z, Romero CE, Powder Technol., 210, 150 (2011)
Wang F, He Y, Tong Z, Tang S, Int. J. Heat Mass Transf., 104, 774 (2017)
Tang S, Wang F, Ren Q, He Y, Fuel, 203, 725 (2017)
Zhang Z, Chen Q, Atmos. Environ., 43, 319 (2008)
Sun K, Indoor Built Environ., 20, 300 (2011)
Jiang H, Lu L, Sun K, Build. Environ., 45, 1184 (2009)
Luo M, Zhao L, Li S, J. Chin. Soc. Power Eng., 36, 883 (2016)
Brach RM, Dunn PF, Aerosol Sci. Technol., 16, 51 (1992)
Wang F, He Y, Tang S, Tong Z, Chin. Sci. Bull., 62, 1292 (2017)
Israel R, Rosner DE, Aerosol Sci. Technol., 2, 45 (1982)
Žukauskas AA, Ulinskas RV, Heat Transf. Eng., 6, 19 (1985)