ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 15, 2021
Accepted March 15, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Characteristics of Li2CO3 as sintering aid for Ce0.8Sm0.2 O2-δ electrolyte in solid oxide fuel cells

School of Chemical Engineering, Chonnam National University, Yongbongro 77, Bukgu, Gwangju 61186 Korea
Korean Journal of Chemical Engineering, July 2022, 39(7), 1796-1804(9), 10.1007/s11814-022-1112-5
downloadDownload PDF

Abstract

Owing to its excellent ionic conductivity, 20 mol% samarium doped ceria (Ce0.8Sm0.2O2-δ, SDC) is considered a promising alternative as an electrolyte in solid oxide fuel cells (SOFCs). SDC electrolytes, however, require high sintering temperatures over 1,600 ℃ to attain sufficient density to be SOFC electrolytes. To lower the SDC sintering temperature, different amounts of Li2CO3 (0-12mol% of Li) were evaluated as a sintering aid for SDC electrolytes. The SDC electrolyte samples with Li were sintered at 1,400 ℃ and were compared with SDC electrolytes sintered at 1,600 ℃. The SDC electrolyte with 6mol% of Li sintered at 1,400 ℃ (Li6SDC1400) was densified to 97.495% of theoretical density (T.D.), which is similar to that achieved by the SDC electrolyte sintered at 1,600 ℃ (97.433% of T.D.). The improved formation of grain boundary in the Li6SDC1400 sample increased the density of the SDC, resulting in enhancement of ionic conductivity and cell performance. At 800 ℃, the maximum power density of the Li6SDC1400 electrolyte sample was 120.15mW/cm2.

References

Lee JM, Yun JW, Ceram. Int., 42, 8698 (2016)
Zhan Z, Lin Y, Pillai M, Kim I, Barnett SA, J. Power Sources, 161, 460 (2006)
Ormerod RM, Chem. Soc. Rev., 32, 17 (2003)
Brett DJ, Alan A, Brandon NP, Skinner SJ, Chem. Soc. Rev., 37, 1568 (2008)
Jo DH, Chun JH, Park KT, Hwang JW, Lee JY, Jung HW, Kim SH, Korean J. Chem. Eng., 28, 1844 (2011)
Kim JH, Park YM, Kim T, Kim H, Korean J. Chem. Eng., 29, 349 (2012)
Chen M, Zhang H, Fan L, Wang C, Zhu B, Int. J. Hydrog. Energy, 39, 12309 (2014)
Zinkevich M, Djurovic D, Aldinger F, Solid State Ion., 177, 989 (2006)
Zhu T, Lin Y, Yang Z, Su D, Ma S, Han M, Chen F, J. Power Sources, 261, 255 (2014)
Wang X, Ma Y, Raza R, Muhammed M, Zhu B, Electrochem. Commun., 10, 1617 (2008)
Singh B, Bhardwaj A, Gautam SK, Kumar D, Parkash O, Kim IH, Song SJ, J. Power Sources, 345, 176 (2017)
Zhang G, Li W, Huang W, Cao Z, Shao K, Li F, Tang C, Li C, He C, Zhang Q, Fan L, J. Power Sources, 386, 56 (2018)
Khan I, Tiwari PK, Basu S, Electrochim. Acta, 294, 1 (2019)
Zhang X, Deces-Petit C, Yick S, Robertson M, Kesler O, Maric R, Ghosh D, J. Power Sources, 162, 480 (2006)
Fan L, Wang C, Chen M, Zhu B, J. Power Sources, 234, 154 (2013)
Zhu B, Li S, Mellander BE, Electrochem. Commun., 10, 302 (2008)
Chen PL, Chen IW, J. Am. Ceram. Soc., 79, 3129 (1996)
Chen PL, Chen IW, J. Am. Ceram. Soc., 80, 637 (1997)
Tianshu Z, Hing P, Huang H, Kilner J, J. Mater. Process. Technol., 113, 463 (2001)
Herring C, J. Appl. Phys., 21, 301 (1950)
Wang J, Chen X, Xie S, Chen L, Wang Y, Meng J, Zhou D, J. Power Sources, 428, 105 (2019)
Le S, Zhu S, Zhu X, Sun K, J. Power Sources, 222, 367 (2013)
Yoshida H, Inagaki T, J. Alloy. Compd., 408, 632 (2006)
Villas-Boas LA, Figueiredo FMI, de Souza DPF, Marques FBM, Solid State Ion., 262, 522 (2014)
Wei T, Jia L, Luo J, Chi B, Pu J, Li J, Appl. Surf. Sci., 506, 144699 (2020)
Guo X, Solid State Ion., 81, 235 (1995)
Guo X, Solid State Ion., 96, 247 (1997)
Guo X, Comput. Mater. Sci., 20, 168 (2001)
Guo X, Sigle W, Fleig J, Maier J, Solid State Ion., 154, 555 (2002)
Guo X, Zhang Z, Acta Mater., 51, 2539 (2003)
M’Peko JC, de Souza MF, Appl. Phys. Lett., 83, 737 (2003)
Guo X, Waser R, Prog. Mater. Sci., 51, 151 (2006)
Ruifeng G, Zongqiang M, J. Rare Earth, 25, 364 (2007)
Prakash BS, Kumar SS, Aruna SR, B. Mater. Sci., 40, 441 (2017)
Nie X, Chen Y, Mushtaq N, Rauf S, Wang B, Dong W, Wang X, Wang H, Zhu B, Nanoscale Res. Lett., 14, 1 (2019)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로