Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 9, 2021
Accepted March 4, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Eco-friendly adsorption of dye pollutants by palygorskite in aqueous effluents: Experimental and computational studies
Anne Beatriz Figueira Câmara†
Rafael Viana Sales
Carlos Vital dos Santos Júnior1
Miguel Angelo Fonseca de Souza1
Clenildo de Longe
Thiago Medeiros Chianca
Rosangela Dala Possa2
Luiz Carlos Bertolino3
and Luciene Santos de Carvalho†
Camara ABF
Sales RV
dos Santos Junior CV
de Souza MAF
de Longe C
Chianca TM
Possa RD
Bertolino LC
de Carvalho LS
Institute of Chemistry, Federal University of Rio Grande do Norte, 59078-900, Natal, Brazil 1Laboratory of Computational Chemistry, Institute of Chemistry, Federal University of Rio Grande do Norte, 59078-900, Natal, Brazil 2Mineral Technology Center, 21941-908, University City, Rio de Janeiro, Brazil 3Xingu Study Institute, Federal University of the South and Southeast of Pará, 68380-000, São Félix do Xingu-PA, Brazil
anne.beatrizfc@gmail.com
Korean Journal of Chemical Engineering, July 2022, 39(7), 1805-1820(16), 10.1007/s11814-022-1101-8
Download PDF
Abstract
Palygorskite clay mineral (Pal) was employed in the removal of Congo red (CR) and methylene blue (MB) dyes pollutants in aqueous effluents by the adsorption process. The materials, Pal raw and acid Pal (Apal), were characterized by SEM, EDX, XRD, XFR, FTIR, XPS and Raman spectroscopy techniques that evidenced the main active sites of clay mineral. Characterization data indicated that acid treatment caused a leaching process of metallic cations on the Pal surface. As result, the maximum adsorption capacity was increased from 11.3 to 120.5mg·g-1 and from 2.7 to 238.1mg·g-1 for MB and CR dyes, respectively. The regeneration result after five cycles was of 75% recovered to MB adsorption into Apal. Semi-empirical quantum mechanical (SQM) calculations were performed to identify the mechanism of interaction between the Pal surface and dyes. High correlation (R2>0.99) was observed for the experimental data using the pseudo-second-order kinetic model, that were confirmed by computed enthalpy values (-298.7 to - 84.5 kJ·mol-1), suggesting a chemisorption process as the determining step. Furthermore, the experimental and computational results indicated that the Pal also could work removing efficiently two dyes simultaneously with an adsorption capacity of 37.2 and 40.4mg·g-1 for MB and CR, respectively.
Keywords
References
Divriklioglu M, Akar ST, Akar T, Environ. Sci. Pollut. Res., 26, 25834 (2019)
Crini G, Torri G, Lichtfouse E, Kyzas GZ, Wilson LD, Morin-Crini N, Environ. Chem. Lett., 17, 1645 (2019)
Youcef LD, Belaroui LS, Lópes-Galindo A, Appl. Clay Sci., 179, 105145 (2019)
Prajapati AK, Mondal MK, J. Mol. Liq., 307, 112949 (2020)
Eltaweil AS, Elgarhym GS, El-Subruiti GM, Omer AM, Int. J. Biol. Macromol., 154, 307 (2020)
Li Z, Hanafy H, Zhang L, Sellaoui L, Netto MS, Oliveira MLS, Seliem MK, Dotto GL, Bonilla-Petriciolet A, Li Q, Chem. Eng. J., 388, 124263 (2020)
Wekoye JN, Wanyonyi WC, Wangila PT, Tonui MK, Environ. Chem. Ecotoxicol., 2, 24 (2020)
Saleh TA, Elsharif AM, Bin-Dahman OA, J. Mol. Liq., 340, 117024 (2021)
Basaleh AA, Al-Malack MH, Saleh TA, J. Environ. Chem. Eng., 9, 105126 (2021)
Chaari I, Fakfakh E, Medhioub M, Jamoussi F, J. Mol. Struct., 1179, 679 (2019)
Souza PR, Dotto GL, Salau NPG, J. Environ. Chem. Eng., 7, 102891 (2019)
Pan J, Li R, Zhai L, Zhang Z, Ma J, Liu H, J. Clean Prod., 217, 371 (2019)
Zhang U, Wang W, Zhang J, Liu P, Wang A, Chem. Eng. J., 263, 390 (2015)
Moreira MA, Ciuffi KJ, Rives V, Vicente MA, Trujillano R, Gil A, Korili SA, Faria EH, Appl. Clay Sci., 135, 394 (2017)
Qiu G, Xie Q, Liu H, Chen T, Xie J, Li H, Appl. Clay Sci., 118, 107 (2015)
Zha F, Huang W, Wang J, Chang Y, Ding J, Ma J, Chem. Eng. J., 215, 579 (2013)
Middea A, Fernandes TLAP, Neumann R, Gomes OFM, Spinelli LS, Appl. Surf. Sci., 282, 253 (2013)
Li W, Liu J, Su J, Wu J, Xia Y, Zhu L, Xu Z, Zhao W, Yan Y, Zhang D, J. Clean Prod., 226, 781 (2019)
Rietveld HM, Acta Crystallogy, 22, 151 (1967)
Choi AES, Roces S, Dugos N, Arcega A, Wan MW, J. Clean Prod., 161, 267 (2017)
Tong KS, Kassin MJ, Azraa A, Chem. Eng. J., 170, 145 (2011)
Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P, Chem. Eng. J., 372, 526 (2019)
Habibi A, Belaroui LS, Bengueddach A, Galindo AL, Díaz CIS, Peña A, Microporous Mesoporous Mater., 268, 293 (2018)
Spicher S, Grimme S, Angew. Chem.-Int. Edit., 59, 2 (2020)
Klamt A, Schüürmann G, J. Chem. Soc.-Perkin Trans. 2, 2, 799 (1993)
Stewart JP, MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA. http://OpenMOPAC.net (accessed 29 June 2021).
Stewart JJP, Int. J. Quantum Chem., 58, 133 (1996)
Li A, Muddana HS, Gilson MK, J. Chem. Theory Comput., 10, 1563 (2014)
Daniel CRA, Rodrigues NM, Costa NB Jr, Freire RO, J. Phys. Chem. C, 119, 23398 (2015)
Enescu M, Ridard J, Gheorghe V, Levy B, J. Phys. Chem. B, 106, 176 (2002)
Xiaoyan W, Sun Y, Pan D, Niu Z, Xu Z, Jiang Y, Wu W, Li Z, Zhang L, Fan Q, Appl. Clay Sci., 183, 105363 (2019)
Lu Y, Wang W, Wang Q, Xu J, Wang A, Appl. Clay Sci., 183, 105301 (2019)
Huang D, Zheng Y, Quan Q, Appl. Clay Sci., 183, 105314 (2019)
Rosendo FRGV, Pinto LIF, de Lima IS, Trigueiro P, Honório LMDC, Fonseca MG, Silva-Filho EC, Ribeiro AB, Furtini MB, Osajima JA, Appl. Clay Sci., 188, 105499 (2020)
Cecilia JA, Vilarrasa-García E, Cavalcante CL, Azevedo DCS, Franco F, Rodríguez-Castellón E, J. Environ. Chem. Eng., 6, 4573 (2018)
Wang D, Zhu L, Qiu J, Zhu P, Appl. Clay Sci., 185, 105421 (2020)
Frini-Srasra N, Srasra E, Desalination, 250, 26 (2010)
Zhu J, Zhang P, Wang Y, Wen K, Su X, Zhu R, He H, Xi Y, Appl. Clay Sci., 159, 60 (2018)
Wang C, Zou X, Liu H, Chen T, Suib SL, Chen D, Xie J, Li M, Sun F, Appl. Surf. Sci., 486, 420 (2019)
Saleh TA, Gupta VK, Curr. Nanosc., 8, 739 (2012)
Chen Q, Zhu R, Deng L, Ma L, He Q, Du J, Fu H, Zhang J, Wang A, Chem. Eng. J., 378, 122131 (2019)
Zhang M, Lu J, Zhu C, Xiang Y, Xu L, Chen T, Solid State Sci., 90, 76 (2019)
Amari A, Gannouni H, Khan MI, Almesfer MK, Elkhaleefa AM, Gannouni A, Appl. Sci., 8, 2302 (2018)
Ardizzone S, Bianchi CL, Fadoni M, Vercelli B, Appl. Surf. Sci., 119, 253 (1997)
Bentahar S, Dbik A, Khomri ME, Messaoudi NE, Lacherai A, J. Environ. Chem. Eng., 5, 5921 (2017)
Wang G, Zhang Y, Wang S, Wang Y, Song H, Lv S, Li C, Environ. Sci. Water Res. Technol., 6, 1568 (2020)
Shaban M, Abukhadra MR, Khan AAP, Jibali BM, J. Taiwan Inst. Chem. Eng., 82, 102 (2018)
Oliveira MF, Silva MGC, Vieira MGA, Appl. Clay Sci., 168, 366 (2018)
Langmuir I, J. Am. Chem. Soc., 38, 2221 (1918)
Li T, Liao T, Su X, Yu X, Han B, Zhu Y, Zhang Y, Environ. Sci. Water Res. Technol., 4, 1671 (2018)
Bhattacharyya KG, Gupta SS, Desalination, 272, 6 (2011)
Mouni L, Belkhiri L, Bollinger JC, Bouzaza A, Assadi A, Tirri A, Dahmouni F, Madani K, Remini H, Appl. Clay Sci., 153, 38 (2018)
Hajjaji W, Andrejkovičová S, Tobaldi DM, Lopez-Galindo A, Jammoussi F, Rocha F, Labrincha JA, Clay Min., 51, 19 (2016)
Amrhar O, Nassali H, Elyoubi MS, J. Mater. Environ. Sci., 6, 3054 (2006)
Ngulube T, Gumbo JR, Masind V, Maity A, J. Mol. Struct., 1184, 389 (2019)
Liu J, Wang N, Zhang H, Baevens J, J. Environ. Conv. Manag., 238, 473 (2019)
Tian C, Feng C, Wei M, Wu Y, Chemosphere, 208, 476 (2018)
Ausavasuki A, Kampoosaen C, Kengnok O, J. Clean Prod., 134, 506 (2016)
Chahkandi M, Mater. Chem. Phys., 202, 340 (2017)
Crini G, Badot PM, Prog. Polym. Sci, 33, 399 (2008)
Panczyk T, Wolski P, Jagusiak A, Drach M, RSC Adv., 4, 47304 (2014)
Zhou L, Johnson R, Habteyes T, Guo H, J. Chem. Phys., 146, 164701 (2017)
Huber RG, Margreiter MA, Fuchs JE, von Grafenstein S, Tautermann CS, Liedl KR, Fox T, J. Chem. Inf. Model., 54, 1371 (2014)
Crini G, Torri G, Lichtfouse E, Kyzas GZ, Wilson LD, Morin-Crini N, Environ. Chem. Lett., 17, 1645 (2019)
Youcef LD, Belaroui LS, Lópes-Galindo A, Appl. Clay Sci., 179, 105145 (2019)
Prajapati AK, Mondal MK, J. Mol. Liq., 307, 112949 (2020)
Eltaweil AS, Elgarhym GS, El-Subruiti GM, Omer AM, Int. J. Biol. Macromol., 154, 307 (2020)
Li Z, Hanafy H, Zhang L, Sellaoui L, Netto MS, Oliveira MLS, Seliem MK, Dotto GL, Bonilla-Petriciolet A, Li Q, Chem. Eng. J., 388, 124263 (2020)
Wekoye JN, Wanyonyi WC, Wangila PT, Tonui MK, Environ. Chem. Ecotoxicol., 2, 24 (2020)
Saleh TA, Elsharif AM, Bin-Dahman OA, J. Mol. Liq., 340, 117024 (2021)
Basaleh AA, Al-Malack MH, Saleh TA, J. Environ. Chem. Eng., 9, 105126 (2021)
Chaari I, Fakfakh E, Medhioub M, Jamoussi F, J. Mol. Struct., 1179, 679 (2019)
Souza PR, Dotto GL, Salau NPG, J. Environ. Chem. Eng., 7, 102891 (2019)
Pan J, Li R, Zhai L, Zhang Z, Ma J, Liu H, J. Clean Prod., 217, 371 (2019)
Zhang U, Wang W, Zhang J, Liu P, Wang A, Chem. Eng. J., 263, 390 (2015)
Moreira MA, Ciuffi KJ, Rives V, Vicente MA, Trujillano R, Gil A, Korili SA, Faria EH, Appl. Clay Sci., 135, 394 (2017)
Qiu G, Xie Q, Liu H, Chen T, Xie J, Li H, Appl. Clay Sci., 118, 107 (2015)
Zha F, Huang W, Wang J, Chang Y, Ding J, Ma J, Chem. Eng. J., 215, 579 (2013)
Middea A, Fernandes TLAP, Neumann R, Gomes OFM, Spinelli LS, Appl. Surf. Sci., 282, 253 (2013)
Li W, Liu J, Su J, Wu J, Xia Y, Zhu L, Xu Z, Zhao W, Yan Y, Zhang D, J. Clean Prod., 226, 781 (2019)
Rietveld HM, Acta Crystallogy, 22, 151 (1967)
Choi AES, Roces S, Dugos N, Arcega A, Wan MW, J. Clean Prod., 161, 267 (2017)
Tong KS, Kassin MJ, Azraa A, Chem. Eng. J., 170, 145 (2011)
Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P, Chem. Eng. J., 372, 526 (2019)
Habibi A, Belaroui LS, Bengueddach A, Galindo AL, Díaz CIS, Peña A, Microporous Mesoporous Mater., 268, 293 (2018)
Spicher S, Grimme S, Angew. Chem.-Int. Edit., 59, 2 (2020)
Klamt A, Schüürmann G, J. Chem. Soc.-Perkin Trans. 2, 2, 799 (1993)
Stewart JP, MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA. http://OpenMOPAC.net (accessed 29 June 2021).
Stewart JJP, Int. J. Quantum Chem., 58, 133 (1996)
Li A, Muddana HS, Gilson MK, J. Chem. Theory Comput., 10, 1563 (2014)
Daniel CRA, Rodrigues NM, Costa NB Jr, Freire RO, J. Phys. Chem. C, 119, 23398 (2015)
Enescu M, Ridard J, Gheorghe V, Levy B, J. Phys. Chem. B, 106, 176 (2002)
Xiaoyan W, Sun Y, Pan D, Niu Z, Xu Z, Jiang Y, Wu W, Li Z, Zhang L, Fan Q, Appl. Clay Sci., 183, 105363 (2019)
Lu Y, Wang W, Wang Q, Xu J, Wang A, Appl. Clay Sci., 183, 105301 (2019)
Huang D, Zheng Y, Quan Q, Appl. Clay Sci., 183, 105314 (2019)
Rosendo FRGV, Pinto LIF, de Lima IS, Trigueiro P, Honório LMDC, Fonseca MG, Silva-Filho EC, Ribeiro AB, Furtini MB, Osajima JA, Appl. Clay Sci., 188, 105499 (2020)
Cecilia JA, Vilarrasa-García E, Cavalcante CL, Azevedo DCS, Franco F, Rodríguez-Castellón E, J. Environ. Chem. Eng., 6, 4573 (2018)
Wang D, Zhu L, Qiu J, Zhu P, Appl. Clay Sci., 185, 105421 (2020)
Frini-Srasra N, Srasra E, Desalination, 250, 26 (2010)
Zhu J, Zhang P, Wang Y, Wen K, Su X, Zhu R, He H, Xi Y, Appl. Clay Sci., 159, 60 (2018)
Wang C, Zou X, Liu H, Chen T, Suib SL, Chen D, Xie J, Li M, Sun F, Appl. Surf. Sci., 486, 420 (2019)
Saleh TA, Gupta VK, Curr. Nanosc., 8, 739 (2012)
Chen Q, Zhu R, Deng L, Ma L, He Q, Du J, Fu H, Zhang J, Wang A, Chem. Eng. J., 378, 122131 (2019)
Zhang M, Lu J, Zhu C, Xiang Y, Xu L, Chen T, Solid State Sci., 90, 76 (2019)
Amari A, Gannouni H, Khan MI, Almesfer MK, Elkhaleefa AM, Gannouni A, Appl. Sci., 8, 2302 (2018)
Ardizzone S, Bianchi CL, Fadoni M, Vercelli B, Appl. Surf. Sci., 119, 253 (1997)
Bentahar S, Dbik A, Khomri ME, Messaoudi NE, Lacherai A, J. Environ. Chem. Eng., 5, 5921 (2017)
Wang G, Zhang Y, Wang S, Wang Y, Song H, Lv S, Li C, Environ. Sci. Water Res. Technol., 6, 1568 (2020)
Shaban M, Abukhadra MR, Khan AAP, Jibali BM, J. Taiwan Inst. Chem. Eng., 82, 102 (2018)
Oliveira MF, Silva MGC, Vieira MGA, Appl. Clay Sci., 168, 366 (2018)
Langmuir I, J. Am. Chem. Soc., 38, 2221 (1918)
Li T, Liao T, Su X, Yu X, Han B, Zhu Y, Zhang Y, Environ. Sci. Water Res. Technol., 4, 1671 (2018)
Bhattacharyya KG, Gupta SS, Desalination, 272, 6 (2011)
Mouni L, Belkhiri L, Bollinger JC, Bouzaza A, Assadi A, Tirri A, Dahmouni F, Madani K, Remini H, Appl. Clay Sci., 153, 38 (2018)
Hajjaji W, Andrejkovičová S, Tobaldi DM, Lopez-Galindo A, Jammoussi F, Rocha F, Labrincha JA, Clay Min., 51, 19 (2016)
Amrhar O, Nassali H, Elyoubi MS, J. Mater. Environ. Sci., 6, 3054 (2006)
Ngulube T, Gumbo JR, Masind V, Maity A, J. Mol. Struct., 1184, 389 (2019)
Liu J, Wang N, Zhang H, Baevens J, J. Environ. Conv. Manag., 238, 473 (2019)
Tian C, Feng C, Wei M, Wu Y, Chemosphere, 208, 476 (2018)
Ausavasuki A, Kampoosaen C, Kengnok O, J. Clean Prod., 134, 506 (2016)
Chahkandi M, Mater. Chem. Phys., 202, 340 (2017)
Crini G, Badot PM, Prog. Polym. Sci, 33, 399 (2008)
Panczyk T, Wolski P, Jagusiak A, Drach M, RSC Adv., 4, 47304 (2014)
Zhou L, Johnson R, Habteyes T, Guo H, J. Chem. Phys., 146, 164701 (2017)
Huber RG, Margreiter MA, Fuchs JE, von Grafenstein S, Tautermann CS, Liedl KR, Fox T, J. Chem. Inf. Model., 54, 1371 (2014)