ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 7, 2021
Accepted March 20, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Preparation of polydopamine-coated TiO2 composites for photocatalytic removal of gaseous ammonia under 405 nm violet-blue light

Envrionmental Technology Division, Korea Testing Laboratory, 87, Digital-ro 26-gil, Guro-gu, Seoul 08389, Korea 1Dongguk University, Wonheung-gwan F619 30, Pildong-ro 1gil, Jung-gu, Seoul 08389, Korea
parkcg@ktl.re.kr
Korean Journal of Chemical Engineering, July 2022, 39(7), 1863-1871(9), 10.1007/s11814-022-1122-3
downloadDownload PDF

Abstract

Although photocatalytic reactions using the ultraviolet (UV) range (particularly UV B (280-320 nm) wavelengths) is well-established, the photocatalytic effect of longer wavelengths (especially that of UVA (≥380 nm) and visible light (≥400 nm)) have only recently been studied and utilized for environmental applications. In this work, we coated polydopamine (PDA) and TiO2 on a support and investigated the synergistic effects of the corresponding composites for the photocatalytic removal of gaseous ammonia under 405 nm violet-blue light. The PDA layer with TiO2 was covalently attached on a ceramic ball using the drop-casting method. The roughness and functional groups of the TiO2-PDA coated ball surfaces were verified using an infrared imaging microscope and field emission scanning electron microscope (FE-SEM). The photocatalytic activity of the obtained hybrid TiO2-PDA coated ball for the removal of ammonia was investigated using a UV C and 405 nm LED lamp at 24 ℃. The results showed that both the TiO2 (control sample) and TiO2-PDA coated balls successfully removed ammonia under similar experimental conditions with the 254 nm UV C lamp. Notably, the TiO2-PDA coated ball exhibited an enhanced ammonia removal efficiency of 72% under 405 nm LED light irradiation. Thus, the TiO2-PDA coated ball is a promising indoor air cleaning technique under LED light irradiation.

References

Sanches SG, Flores JH, Silva MIP, Mater. Res. Bull., 109, 82 (2019)
Likodimos V, Appl. Catal. B: Environ., 230, 269 (2018)
Zhang L, Xu L, He J, Zhang J, Electrochim. Acta, 117, 192 (2014)
Hernández S, Hidalgo D, Sacco A, Chiodoni A, Lamberti A, Cauda V, Tresso E, Saracco G, Phys. Chem. Chem. Phys., 17, 7775 (2015)
Xiaoya L, Jingang X, Lingyuan L, Xiang J, Heqing F, Int. J. Polym. Mater., 66, 835 (2017)
Verbruggen SW, Keulemans M, Filippousi M, Flahaut D, Tendeloo GV, Lacombe S, Martens JA, Lenaerts S, Appl. Catal. B: Environ., 156-157, 116 (2014)
Vasilaki E, Georgaki I, Vernardou D, Vamvakaki M, Katsarakis N, Appl. Surf. Sci., 353, 865 (2015)
Liang Y, Wang H, Casalongue HS, Chen Z, Dai H, Nano Res., 3, 701 (2010)
Chiu SM, Chen ZS, Yang KY, Hsu YL, Gan D, J. Mater. Process. Technol., 192-193, 60 (2007)
Mahdieh ZM, Shekarriz S, Taromi FA, Fibers Polym., 22, 87 (2021)
Pénard AL, Gacoin T, Boilot JP, Acc. Chem. Res., 40(9), 895 (2007)
Münz WD, Hauzer FJM, Schulze D, Buil B, Surf. Coat. Technol., 49(1-3), 161 (1991)
Mahltig B, Fischer A, J. Polym. Sci. B: Polym. Phys., 48, 1562 (2010)
Qiu WZ, Yang HC, Xu ZK, Adv. Colloid Interface Sci., 256, 111 (2018)
Gu GE, Park CS, Cho HJ, Ha TH, Bae J, Kwon OS, Lee JS, Lee CS, Sci. Rep., 8(1), 4393 (2018)
Lee H, Dellatore SM, Miller WM, Messersmith PB, Science, 318(5849), 426 (2007)
Lee JJ, Park IS, Shin GS, Lyu SK, Ahn SG, Bae TS, Lee MH, Int. J. Precision Eng. Manufacturing, 15(8), 1647 (2014)
Lee M, Ku SH, Ryu J, Park CB, J. Mater. Chem., 20(40), 8848 (2010)
Lee M, Wi J, Koziel JA, Ahn H, Li P, Chen B, Meiirkhanuly Z, Banik C, Jenks W, Atmosphere, 11(3), 283 (2020)
Maurer DL, Koziel JA, Chemosphere, 221, 778 (2019)
Guarino M, Costa A, Porro M, Bioresour. Technol., 99(7), 2650 (2008)
Kite SV, Kadam AN, Sathe DJ, Patil S, Mali SS, Hong CK, Lee SW, Garadkar KM, ACS Omega, 6(26), 17071 (2021)
Della Vecchia NF, Luchini A, Napolitano A, D’Errico G, Vitiello G, Szekely N, d’Ischia M, Paduano L, Langmuir, 30(32), 9811 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로