ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 13, 2021
Accepted December 15, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Efficient removal of Cr(VI) by spent coffee grounds: Molecular adsorption and reduction mechanism

School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512023, P. R. China
20180398@qq.com
Korean Journal of Chemical Engineering, July 2022, 39(7), 1872-1879(8), 10.1007/s11814-021-1045-4
downloadDownload PDF

Abstract

Spent coffee ground (SCG), a byproduct from the soluble coffee industry, is usually discarded as waste. The reutilization of SCG for the removal of toxic heavy metal ions is a novel research direction. Until recently, the molecular adsorption and reduction mechanism of Cr(VI) on SCG was barely investigated. In this study, SCG was used for the efficient removal of Cr(VI) at a concentration range of 2-100mg/L, with a maximum Cr(VI) uptake up to 36.2mg/g. Structural characterization and ATR-FTIR analysis indicated that SCG possessed abundant surface O and N- containing functional groups. The corresponding adsorption and reduction effects on the Cr(VI) removal were investigated by the carboxyl and hydroxyl groups elimination experiments and ATR-FTIR characterization, respectively. The results revealed that HCrO4 - ions were preliminarily adsorbed on SCG surfaced-COOH/-OH/-NH by the formation of hydrogen bond (SCG surfaced-COOH/-OH/-NH· · · HCrO4 -), and quickly reduced to Cr(III) by the electron denoted by phenolic compounds, and then in-situ immobilized on the surface of SCG. The effect of Cr(VI) concentration, coexisting ions, and humic acid was systematically studied to optimize the removal of Cr(VI) wastewater. Column experiments provided a new substitution to restore the Cr(VI)-containing groundwater for the permeable reactive barrier application. Thus, the proposed study uncovered the intrinsic Cr(VI) removal mechanism at the molecular level and explored the application of SCG for the efficient removal of Cr(VI).

References

Kaprara E, Seridou P, Tsiamili V, Mitrakas M, Vourlias G, Tsiaoussis I, Kaimakamis G, Pavlidou E, Andritsos N, Simeonidis K, J. Hazard. Mater., 262, 606 (2013)
Liu T, Zhao L, Sun D, Tan X, J. Hazard. Mater., 184, 724 (2010)
Lee YJ, Lee CG, Kang JK, Park SJ, Alvarez PJJ, Environ. Sci. Water Res. Technol., 7, 222 (2021)
Lee CG, Park JA, Choi JW, Ko SO, Lee SH, Water Air Soil Pollut., 227, 287 (2016)
Du J, Bao J, Lu C, Werner D, Water Res., 102, 73 (2016)
Mu Y, Ai Z, Zhang L, Song F, ACS Appl. Mater. Inter., 7, 1997 (2015)
Rodríguez-Padrón D, Muñoz-Batista MJ, Li H, Shih K, Balu AM, Pineda A, Luque R, ACS Sustain. Chem. Eng., 7, 17030 (2019)
Franca AS, Oliveira LS, Ferreira ME, Desalination, 249, 267 (2009)
Monente C, Ludwig IA, Irigoyen A, De Pena MP, Cid C, J. Agric. Food Chem., 63, 4327 (2015)
Alves ACF, Antero RVP, de Oliveira SB, Ojala SA, Scalize PS, Environ. Sci. Pollut. Res., 26, 24850 (2019)
An BH, Jeong H, Kim JH, Park S, Jeong JH, Kim MJ, Chang M, J. Agric. Food Chem., 67, 8649 (2019)
Moustafa H, Guizani C, Dupont C, Martin V, Jeguirim M, Dufresne A, ACS Sustain. Chem. Eng., 5, 1906 (2017)
Panusa A, Zuorro A, Lavecchia R, Marrosu G, Petrucci R, J. Agric. Food Chem., 61, 4162 (2013)
Park MH, Lee J, Kim JY, Chemosphere, 234, 179 (2019)
Prabhakaran SK, Vijayaraghavan K, Balasubramanian R, Ind. Eng. Chem. Res., 48, 2113 (2009)
Han TU, Kim J, Kim K, J. Ind. Eng. Chem., 100, 310 (2021)
Tian T, Freeman S, Corey M, German JB, Barile D, J. Agric. Food Chem., 65, 2784 (2017)
Vardon DR, Moser BR, Zheng W, Witkin K, Evangelista RL, Strathmann TJ, Rajagopalan K, Sharma BK, ACS Sustain. Chem. Eng., 1, 1286 (2013)
Bardiya N, Hwang YW, Bae JH, Anaerobe, 10, 7 (2004)
Zhao N, Zhao C, Tsang DCW, Liu K, Zhu L, Zhang W, Zhang J, Tang Y, Qiu R, J. Hazard. Mater., 404, 124162 (2021)
Chen T, Zhou Z, Xu S, Wang H, Lu W, Bioresour. Technol., 190, 388 (2015)
Zhao N, Yin Z, Liu F, Zhang M, Lv Y, Hao Z, Pan G, Zhang J, Bioresour. Technol., 260, 294 (2018)
Hu Y, Peng X, Ai Z, Jia F, Zhang L, Environ. Sci. Technol., 53, 8333 (2019)
Li J, Zhang X, Liu M, Pan B, Zhang W, Shi Z, Guan X, Environ. Sci. Technol., 52, 2988 (2018)
Lv X, Xu J, Jiang G, Tang J, Xu X, J. Colloid Interface Sci., 369, 460 (2012)
Cao CY, Qu J, Yan WS, Zhu JF, Wu ZY, Song WG, Langmuir, 28, 4573 (2012)
Hu Y, Zhan G, Peng X, Liu X, Ai Z, Jia F, Cao S, Quan F, Shen W, Zhang L, Chem. Eng. J., 389, 124414 (2020)
Xu J, Cao Z, Wang Y, Zhang Y, Gao X, Ahmed MB, Zhang J, Yang Y, Zhou JL, Lowry GV, Chem. Eng. J., 359, 713 (2019)
Xu H, Xie L, Li J, Hakkarainen M, ACS Appl. Mater. Interf., 9, 27972 (2017)
Zhu S, Ho SH, Huang X, Wang D, Yang F, Wang L, Wang C, Cao X, Ma F, ACS Sustain. Chem. Eng., 5, 9673 (2017)
Zhu S, Huang X, Yang X, Peng P, Li Z, Jin C, Environ. Sci. Technol., 54, 8123 (2020)
Zhu H, Tan X, Tan L, Chen C, Alharbi NS, Hayat T, Fang M, Wang X, ACS Appl. Nano Mater., 1, 2689 (2018)
Flynn ED, Catalano JG, Environ. Sci. Technol., 51, 9792 (2017)
Huang X, Hou X, Song F, Zhao J, Zhang L, Environ. Sci. Technol., 50, 1964 (2016)
Jozwiak T, Filipkowska U, Struk-Sokolowska J, Bryszewski K, Trzcinski K, Kuzma J, Slimkowska M, Sci. Rep., 11, 9584 (2021)
Sharma G, Naushad M, Al-Muhtaseb AH, Kumar A, Khan MR, Kalia S, Shweta, Bala M, Sharma A, Int. J. Biol. Macromol., 95, 484 (2017)
Cao X, Guo J, Mao J, Lan Y, J. Hazard. Mater., 192, 1533 (2011)
Li Y, Xing B, Wang X, Wang K, Zhu L, Wang S, Energy Fuels, 33, 12459 (2019)
Wang X, Qin Y, Zhu L, Tang H, Environ. Sci. Technol., 49, 6855 (2015)
Almeelbi T, Bezbaruah A, J. Nanoparticle Res., 14, 197 (2012)
Wang H, Liang X, Liu Y, Li T, Lin KYA, Resour. Conserv. Recycl., 168, 105284 (2021)
Lv XX, Hu Y, Tang J, Sheng T, Jiang G, Xu X, Chem. Eng. J., 218, 55 (2013)
Dong H, Lo IM, Water Res., 47, 419 (2013)
Liu T, Rao P, Mak MS, Wang P, Lo IM, Water Res., 43, 2540 (2009)
Wang Q, Cissoko N, Zhou M, Xu X, Phys. Chem. Earth, 36, 442 (2011)
Agrawal P, Bajpai Ak, J. Dispersion Sci. Technol., 32, 1353 (2011)
He F, Zhang M, Qian T, Zhao D, J. Colloid Interface Sci., 334, 96 (2009)
Fang Y, Wu X, Dai M, Lopez-Valdivieso A, Raza S, Ali I, Peng C, Li J, Naz I, J. Clean Prod., 312, 127678 (2021)
Zhong J, Yin W, Li Y, Li P, Wu J, Jiang G, Gu J, Liang H, Water Res., 122, 536 (2017)
Dries J, Bastiaens L, Springael D, Kuypers S, Agathos SN, Diels L, Water Res., 39, 3531 (2005)
Yang Z, Shan C, Zhang W, Jiang Z, Guan X, Pan B, Water Res., 106, 461 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로