Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 14, 2021
Accepted November 1, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Hierarchical multi-metal-doped mesoporous NiO-silica nanoparticles towards a viable platform for Li-ion battery electrode application
Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India 1Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea 2Department of Electronics and Information Convergence Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung-gu, Yongin-si, Gyeonggi-do 17104, Korea
echo@seoultech.ac.kr
Korean Journal of Chemical Engineering, July 2022, 39(7), 1959-1967(9), 10.1007/s11814-021-1003-1
Download PDF
Abstract
Hierarchical nanostructures have received wide attention for their distinguished physical and chemical properties of the synthesized materials, mainly in future energy storage applications. In this study, Ni-based multi-metal doped silica mesoporous nanoflowers were prepared and characterized as a potential anode material for lithium ion batteries. A facile synthesis strategy is depicted here for Ni-based multi-metal doped silica mesoporous nanoflowers by using a CTAB surfactant and ammonia basic media in water-ethanol mixed solvent media. Ce, Al, Mn, and Co species have been chosen as other additive metals for doping in this mesostructure in order to find the enhanced electrochemical performance of the Ni-based silica. Systematic characterization of the material was performed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WA-XRD) analysis and N2 sorption, which show 500-600 nm sized particles with fine-looking nanoflower morphology and surface area in the range of 211-405m2g-1. The initial charge/discharge capacity was found to be 1,313/178, 990/436, 1,122/234 and 1,585/ 689 mA h g- 1 for different Ni-silica, Ni-Ce-silica, Ni-Al-silica and Ni-Co-Mn-Al-silica electrodes, respectively. The enhanced electrochemical performance for Ce doped Ni-silica compared to other mesoporous samples may be attributed to improved electrical conductivity as well as the hierarchical nanoflower-like structure.
Keywords
References
Owusu PA, Asumadu-Sarkodie S, Cogent Engineer., 3, 1167990 (2016)
Kruger P, Alternative energy resources: The quest for sustainable energy, Wiley Publications (2006).
Sternberg A, Bardow A, Energy Environ. Sci., 8, 389 (2015)
Nathan D, Nzewi ON, Onuora KC, Abioye AO, Quest J. Electronics Commun. Eng. Res., 1(1), 01 (2013)
Ge S, Leng Y, Liu T, Longchamps RS, Yang XG, Gao Y, Wang D, Wang D, Wang CY, Sci. Adv., 6, eaay7633 (2020)
Eberle U, Von Helmolt R, Energy Environ. Sci., 3, 689 (2010)
Larcher D, Tarascon JM, Nat. Chem., 7, 19 (2015)
Cabana J, Monconduit L, Larcher D, Palacín MR, Adv. Mater., 22, E170 (2010)
Gao G, Lu S, Dong B, Xiang Y, Xi K, Ding S, J. Mater. Chem., 4, 6264 (2016)
Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X, Adv. Energy Mater., 6, 1502175 (2016)
Ette PM, Chithambararaj A, Prakash AS, Ramesha K, ACS Appl. Mater. Interfaces, 12, 11511 (2020)
Balamurugan S, Naresh N, Prakash I, Satyanarayan N, Appl. Surf. Sci., 535, 147677 (2021)
Li JY, Xu Q, Li G, Yin YX, Wan LJ, Guo YG, Mater. Chem. Front., 1, 1691 (2017)
Li P, Zhao G, Zheng X, Xu X, Yao C, Sun W, Dou SX, Energy Storage Mater., 15, 422 (2018)
Mishra A, Mehta A, Basu S, Malodeb SJ, Shetti NP, Shukla SS, Nadagouda MN, Aminabhavi TM, Mater. Sci. Energy Technol., 1(2), 182 (2018)
Nitta N, Wu F, Lee JT, Yushin G, Mater. Today, 18(5), 252 (2015)
Harris J, Silk R, Smith M, Dong Y, Chen WT, Waterhouse GIN, ACS Omega, 5, 18919 (2020)
Sun S, Zhang X, Sun Y, Yang S, Song X, Yang Z, Phys. Chem. Chem. Phys., 15, 10904 (2013)
Negahdary M, Heli H, Recent Patents on Nanotechnol., 12, 22 (2018)
Tao T, Chen Y, Chen Y, Fox DS, Zhang H, Zhou M, Raveggi M, Barlow AJ, Glushenkov AM, ChemPlusChem, 82, 295 (2017)
Shende P, Kasture P, Gaud RS, Artif. Cells Nanomed. Biotechnol., 46(S1), S413 (2018)
Li L, Ye M, Ding Y, Xie D, Yu D, Hu Y, Chen HY, Peng S, J. Alloy. Compd., 812, 152099 (2020)
Tariq Z, Rehman SU, Zhang J, Butt FK, Zhang X, Cheng B, Zahra S, Li C, Mater. Sci. Semicond. Process, 123, 105549 (2021)
Liu S, Shen B, Niu Y, Xu M, J. Colloid Interface Sci., 488, 20 (2017)
Kim SW, Seo DH, Gwon H, Kim J, Kang K, Adv. Mater., 22, 5260 (2010)
Stöber W, Fink A, J. Colloid Interface Sci., 26, 62 (1968)
Pal N, Im S, Cho EB, Kim H, Park J, J. Ind. Eng. Chem., 81, 99 (2020)
Pal N, Cho EB, Kim D, RSC Adv., 4, 9213 (2014)
Patra AK, Dutta A, Bhaumik A, J. Hazard. Mater., 201-202, 170 (2012)
Hao S, Wang Z, Chen L, Mater. Des., 111, 616 (2016)
Zhou S, Zhao H, Ma D, Miao S, Cheng M, Bao X, Z. Phys. Chem., 219, 949 (2005)
Derafa W, Paloukis F, Mewafy B, Baaziz W, Ersen O, Petit C, Corbel G, Zafeiatos S, RSC Adv., 8, 40712 (2018)
Xie D, Yuan W, Dong Z, Su Q, Zhang J, Du G, Electrochim. Acta, 92, 87 (2013)
Favors Z, Wang W, Bay HH, George A, Ozkan M, Ozkan CS, Sci. Rep., 4(1), 1 (2014)
Ma M, Wang H, Liang S, Guo S, Zhang Y, Du X, Electrochim. Acta, 256, 110 (2017)
Varghese B, Reddy M, Yanwu Z, Lit CS, Hoong TC, Rao GS, Chowdari B, Wee ATS, Lim CT, Sow CH, Chem. Mater., 20(10), 3360 (2008)
Huang X, Tu J, Zhang B, Zhang C, Li Y, Yuan Y, Wu H, J. Power Sources, 161(1), 541 (2006)
Kang Y, Zhang YH, Shi Q, Shi H, Xue D, Shi FN, J. Colloid Interface Sci., 585, 705 (2021)
Kruger P, Alternative energy resources: The quest for sustainable energy, Wiley Publications (2006).
Sternberg A, Bardow A, Energy Environ. Sci., 8, 389 (2015)
Nathan D, Nzewi ON, Onuora KC, Abioye AO, Quest J. Electronics Commun. Eng. Res., 1(1), 01 (2013)
Ge S, Leng Y, Liu T, Longchamps RS, Yang XG, Gao Y, Wang D, Wang D, Wang CY, Sci. Adv., 6, eaay7633 (2020)
Eberle U, Von Helmolt R, Energy Environ. Sci., 3, 689 (2010)
Larcher D, Tarascon JM, Nat. Chem., 7, 19 (2015)
Cabana J, Monconduit L, Larcher D, Palacín MR, Adv. Mater., 22, E170 (2010)
Gao G, Lu S, Dong B, Xiang Y, Xi K, Ding S, J. Mater. Chem., 4, 6264 (2016)
Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X, Adv. Energy Mater., 6, 1502175 (2016)
Ette PM, Chithambararaj A, Prakash AS, Ramesha K, ACS Appl. Mater. Interfaces, 12, 11511 (2020)
Balamurugan S, Naresh N, Prakash I, Satyanarayan N, Appl. Surf. Sci., 535, 147677 (2021)
Li JY, Xu Q, Li G, Yin YX, Wan LJ, Guo YG, Mater. Chem. Front., 1, 1691 (2017)
Li P, Zhao G, Zheng X, Xu X, Yao C, Sun W, Dou SX, Energy Storage Mater., 15, 422 (2018)
Mishra A, Mehta A, Basu S, Malodeb SJ, Shetti NP, Shukla SS, Nadagouda MN, Aminabhavi TM, Mater. Sci. Energy Technol., 1(2), 182 (2018)
Nitta N, Wu F, Lee JT, Yushin G, Mater. Today, 18(5), 252 (2015)
Harris J, Silk R, Smith M, Dong Y, Chen WT, Waterhouse GIN, ACS Omega, 5, 18919 (2020)
Sun S, Zhang X, Sun Y, Yang S, Song X, Yang Z, Phys. Chem. Chem. Phys., 15, 10904 (2013)
Negahdary M, Heli H, Recent Patents on Nanotechnol., 12, 22 (2018)
Tao T, Chen Y, Chen Y, Fox DS, Zhang H, Zhou M, Raveggi M, Barlow AJ, Glushenkov AM, ChemPlusChem, 82, 295 (2017)
Shende P, Kasture P, Gaud RS, Artif. Cells Nanomed. Biotechnol., 46(S1), S413 (2018)
Li L, Ye M, Ding Y, Xie D, Yu D, Hu Y, Chen HY, Peng S, J. Alloy. Compd., 812, 152099 (2020)
Tariq Z, Rehman SU, Zhang J, Butt FK, Zhang X, Cheng B, Zahra S, Li C, Mater. Sci. Semicond. Process, 123, 105549 (2021)
Liu S, Shen B, Niu Y, Xu M, J. Colloid Interface Sci., 488, 20 (2017)
Kim SW, Seo DH, Gwon H, Kim J, Kang K, Adv. Mater., 22, 5260 (2010)
Stöber W, Fink A, J. Colloid Interface Sci., 26, 62 (1968)
Pal N, Im S, Cho EB, Kim H, Park J, J. Ind. Eng. Chem., 81, 99 (2020)
Pal N, Cho EB, Kim D, RSC Adv., 4, 9213 (2014)
Patra AK, Dutta A, Bhaumik A, J. Hazard. Mater., 201-202, 170 (2012)
Hao S, Wang Z, Chen L, Mater. Des., 111, 616 (2016)
Zhou S, Zhao H, Ma D, Miao S, Cheng M, Bao X, Z. Phys. Chem., 219, 949 (2005)
Derafa W, Paloukis F, Mewafy B, Baaziz W, Ersen O, Petit C, Corbel G, Zafeiatos S, RSC Adv., 8, 40712 (2018)
Xie D, Yuan W, Dong Z, Su Q, Zhang J, Du G, Electrochim. Acta, 92, 87 (2013)
Favors Z, Wang W, Bay HH, George A, Ozkan M, Ozkan CS, Sci. Rep., 4(1), 1 (2014)
Ma M, Wang H, Liang S, Guo S, Zhang Y, Du X, Electrochim. Acta, 256, 110 (2017)
Varghese B, Reddy M, Yanwu Z, Lit CS, Hoong TC, Rao GS, Chowdari B, Wee ATS, Lim CT, Sow CH, Chem. Mater., 20(10), 3360 (2008)
Huang X, Tu J, Zhang B, Zhang C, Li Y, Yuan Y, Wu H, J. Power Sources, 161(1), 541 (2006)
Kang Y, Zhang YH, Shi Q, Shi H, Xue D, Shi FN, J. Colloid Interface Sci., 585, 705 (2021)