Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 13, 2021
Accepted March 15, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Sterically hindered amine-functionalized MCM-41 composite for efficient carbon dioxide capture
Shandong Key Laboratory of Multiphase Fluid Reaction and Separation Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China 1Department of Chemical Engineering, Qingdao University of Science and Technology, Gaomi, 261500, China
guanghui@qust.edu.cn
Korean Journal of Chemical Engineering, August 2022, 39(8), 1981-1988(8), 10.1007/s11814-022-1113-4
Download PDF
Abstract
A new adsorbent based on sterically hindered amine for efficient CO2 capture was prepared. Mesoporous silicon MCM-41 was modified by sterically hindered amine AMPD (2-amino-2-methyl-1,3-propanediol) in different AMPD loadings by a facile solid-state self-assembly approach. The physicochemical properties of the MCM-41@AMPD composites were analyzed using XRD, BET, FT-IR and SEM, and the composites were investigated for the CO2 capture performance, including CO2 capture capacity, adsorption selectivity and cycling stability. Characterization analyses showed that the AMPD active components were successfully incorporated and well dispersed into the mesoporous silicon MCM-41 surfaces. Adsorption results suggest that the modification by the active ingredient AMPD can significantly improve the CO2 capture performance. The MCM-41@AMPD material with an AMPD loading of 7mmol?g-1 MCM-41 support exhibits a good CO2 adsorption capacity and CO2 adsorption selectivity, and shows excellent cycling stability. Furthermore, the isosteric heat of CO2 adsorption on the MCM-41@AMPD-7 material was evaluated by the Clausius-Clapeyron equation, and the value was 34-78 kJ?mol-01.
References
Zhang X, Huang Y, Yang J, Gao H, Huang Y, Luo X, Liang Z, Tontiwachwuthikul P, Chem. Eng. J., 383, 123077 (2020)
Heo YJ, Seong DB, Park SJ, J. CO2 Util., 34, 472 (2019)
Shang S, Tao Z, Yang C, Hanif A, Li L, Tsang DCW, Gu Q, Shang J, Chem. Eng. J., 393, 124666 (2020)
Ahmed S, Ramli A, Yusup S, Fuel Process. Technol., 167, 622 (2017)
Shi X, Zheng Y, Lei Y, Xue W, Yan G, Liu X, Cai B, Tong D, Wang J, Sci. Total Environ., 795, 148784 (2021)
Haszeldine RS, Science, 325, 1647 (2009)
Song C, Liu Q, Deng S, Li H, Kitamura Y, Renew. Sust. Energ. Rev., 101, 265 (2019)
Agbonghae EO, Hughes KJ, Ingham DB, Ma L, Pourkashanian M, Ind. Eng. Chem. Res., 53, 14815 (2014)
Hedin N, Andersson L, Bergström L, Yan J, Appl. Energy, 104, 418 (2013)
Brunetti A, Drioli E, Lee YM, Barbieri G, J. Membr. Sci., 454, 305 (2014)
Garcia M, Knuutila HK, Aronu UE, Gu S, Int. J. Greenh. Gas Control, 78, 286 (2018)
Zhou C, Yu S, Ma K, Liang B, Tang S, Liu C, Yue H, Chem. Eng. J., 413, 127675 (2021)
Yıldız MG, Davran-Candan T, Günayc ME, Yıldırım R, J. CO2 Util., 31, 27 (2019)
Bhown AS, Freeman BC, Environ. Sci. Technol., 45, 8624 (2011)
Dey R, Samanta A, Korean J. Chem. Eng., 37, 1951 (2020)
Han KK, Zhou Y, Chun Y, Zhu JH, J. Hazard. Mater., 203, 341 (2012)
Pirzadeh K, Esfandiari K, Ghoreyshi AA, Rahimnejad M, Korean J. Chem. Eng., 37, 513 (2020)
Burri H, Anjum R, Gurram RB, Mitta H, Mutyala S, Jonnalagadda M, Korean J. Chem. Eng., 36(9), 1482 (2019)
Huang N, Chen X, Krishna R, Jiang D, Angew. Chem.-Int. Edit., 54, 2986 (2015)
Dabbawala AA, Ismail I, Vaithilingam BV, Polychronopoulou K, Singaravel G, Morin S, Berthod M, Wahedi YA, Microporous Mesoporous Mater., 303, 110261 (2020)
Sanz R, Calleja G, Arencibia A, Sanz-Pérez ES, Microporous Mesoporous Mater., 209, 165 (2015)
Cheng S, Liu Y, Qi G, Chem. Eng. J., 400, 125946 (2020)
Lin HP, Cheng YR, Lin CR, Li FY, Chen CL, Wong ST, Cheng S, Liu SB, Wan BZ, Mou CY, J. Chin. Chem. Soc., 46, 495 (1999)
Mukherjee S, Akshay, Samanta AN, Adv. Powder Technol., 30, 3231 (2019)
Hu X, Liu L, Luo X, Xiao G, Shiko E, Zhang R, Fan X, Zhou Y, Liu Y, Zeng Z, Li C, Appl. Energy, 260, 114244 (2020)
Zhao P, Yin Y, Cheng W, Xu X, Yang D, Yuan W, J. CO2 Util., 50, 101612 (2021)
Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16, 1463 (2002)
Franchi RS, Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 44, 8007 (2005)
Yue MB, Sun LB, Cao Y, Wang Y, Wang ZJ, Zhu JH, Chem.-Eur. J., 14, 3442 (2008)
Kamarudin KSN, Alias N, Fuel Process. Technol., 106, 332 (2013)
Bougie F, Iliuta MC, J. Chem. Eng. Data, 57, 635 (2012)
Bougie F, Iliuta MC, Chem. Eng. Sci., 65, 4746 (2010)
Lee JJ, Sievers C, Jones CW, Ind. Eng. Chem. Res., 58, 22551 (2019)
Esmaeili H, Roozbehani B, Int. J. Greenh. Gas Con., 30, 212 (2014)
Wang X, Chen L, Guo Q, Chem. Eng. J., 260, 573 (2015)
Gao F, Wang Y, Wang S, Chem. Eng. J., 290, 418 (2016)
Hosseini Y, Najafi M, Khalili S, Jahanshahi M, Peyravi M, Mater. Chem. Phys., 270, 124788 (2021)
Myers AL, Prausnitz JM, AIChE J., 11(1), 121 (1965)
Khalili S, Jahanshahi M, Korean J. Chem. Eng., 38(4), 862 (2021)
Melouki R, Ouadah A, Llewellyn PL, J. CO2 Util., 42, 101292 (2020)
Le MUT, Lee SY, Park SJ, Int. J. Hydrog. Energy, 39, 12340 (2014)
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
Vunain E, Opembe NN, Jalama K, Mishra AK, Meijboom R, J. Therm. Anal. Calorim., 115, 1487 (2014)
Sharma S, Singh UP, Singh AP, Polyhedron, 199, 115102 (2021)
Devi TSR, kumar JS, Ramkumaar GR, Acta A, 133, 214 (2014)
Zhang G, Zhao P, Hao L, Xu Y, J. CO2 Util., 24, 22 (2018)
Sun LB, Li AG, Liu XD, Liu XQ, Feng D, Lu W, Yuan D, Zhou HC, J. Mater. Chem. A, 3, 3252 (2015)
Liu L, Zou G, Yang B, Luo X, Xu S, ACS Appl. Nano Mater., 1, 4695 (2018)
Watabe T, Yogo K, Sep. Purif. Technol., 120, 20 (2013)
Heo YJ, Seong DB, Park SJ, J. CO2 Util., 34, 472 (2019)
Shang S, Tao Z, Yang C, Hanif A, Li L, Tsang DCW, Gu Q, Shang J, Chem. Eng. J., 393, 124666 (2020)
Ahmed S, Ramli A, Yusup S, Fuel Process. Technol., 167, 622 (2017)
Shi X, Zheng Y, Lei Y, Xue W, Yan G, Liu X, Cai B, Tong D, Wang J, Sci. Total Environ., 795, 148784 (2021)
Haszeldine RS, Science, 325, 1647 (2009)
Song C, Liu Q, Deng S, Li H, Kitamura Y, Renew. Sust. Energ. Rev., 101, 265 (2019)
Agbonghae EO, Hughes KJ, Ingham DB, Ma L, Pourkashanian M, Ind. Eng. Chem. Res., 53, 14815 (2014)
Hedin N, Andersson L, Bergström L, Yan J, Appl. Energy, 104, 418 (2013)
Brunetti A, Drioli E, Lee YM, Barbieri G, J. Membr. Sci., 454, 305 (2014)
Garcia M, Knuutila HK, Aronu UE, Gu S, Int. J. Greenh. Gas Control, 78, 286 (2018)
Zhou C, Yu S, Ma K, Liang B, Tang S, Liu C, Yue H, Chem. Eng. J., 413, 127675 (2021)
Yıldız MG, Davran-Candan T, Günayc ME, Yıldırım R, J. CO2 Util., 31, 27 (2019)
Bhown AS, Freeman BC, Environ. Sci. Technol., 45, 8624 (2011)
Dey R, Samanta A, Korean J. Chem. Eng., 37, 1951 (2020)
Han KK, Zhou Y, Chun Y, Zhu JH, J. Hazard. Mater., 203, 341 (2012)
Pirzadeh K, Esfandiari K, Ghoreyshi AA, Rahimnejad M, Korean J. Chem. Eng., 37, 513 (2020)
Burri H, Anjum R, Gurram RB, Mitta H, Mutyala S, Jonnalagadda M, Korean J. Chem. Eng., 36(9), 1482 (2019)
Huang N, Chen X, Krishna R, Jiang D, Angew. Chem.-Int. Edit., 54, 2986 (2015)
Dabbawala AA, Ismail I, Vaithilingam BV, Polychronopoulou K, Singaravel G, Morin S, Berthod M, Wahedi YA, Microporous Mesoporous Mater., 303, 110261 (2020)
Sanz R, Calleja G, Arencibia A, Sanz-Pérez ES, Microporous Mesoporous Mater., 209, 165 (2015)
Cheng S, Liu Y, Qi G, Chem. Eng. J., 400, 125946 (2020)
Lin HP, Cheng YR, Lin CR, Li FY, Chen CL, Wong ST, Cheng S, Liu SB, Wan BZ, Mou CY, J. Chin. Chem. Soc., 46, 495 (1999)
Mukherjee S, Akshay, Samanta AN, Adv. Powder Technol., 30, 3231 (2019)
Hu X, Liu L, Luo X, Xiao G, Shiko E, Zhang R, Fan X, Zhou Y, Liu Y, Zeng Z, Li C, Appl. Energy, 260, 114244 (2020)
Zhao P, Yin Y, Cheng W, Xu X, Yang D, Yuan W, J. CO2 Util., 50, 101612 (2021)
Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16, 1463 (2002)
Franchi RS, Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 44, 8007 (2005)
Yue MB, Sun LB, Cao Y, Wang Y, Wang ZJ, Zhu JH, Chem.-Eur. J., 14, 3442 (2008)
Kamarudin KSN, Alias N, Fuel Process. Technol., 106, 332 (2013)
Bougie F, Iliuta MC, J. Chem. Eng. Data, 57, 635 (2012)
Bougie F, Iliuta MC, Chem. Eng. Sci., 65, 4746 (2010)
Lee JJ, Sievers C, Jones CW, Ind. Eng. Chem. Res., 58, 22551 (2019)
Esmaeili H, Roozbehani B, Int. J. Greenh. Gas Con., 30, 212 (2014)
Wang X, Chen L, Guo Q, Chem. Eng. J., 260, 573 (2015)
Gao F, Wang Y, Wang S, Chem. Eng. J., 290, 418 (2016)
Hosseini Y, Najafi M, Khalili S, Jahanshahi M, Peyravi M, Mater. Chem. Phys., 270, 124788 (2021)
Myers AL, Prausnitz JM, AIChE J., 11(1), 121 (1965)
Khalili S, Jahanshahi M, Korean J. Chem. Eng., 38(4), 862 (2021)
Melouki R, Ouadah A, Llewellyn PL, J. CO2 Util., 42, 101292 (2020)
Le MUT, Lee SY, Park SJ, Int. J. Hydrog. Energy, 39, 12340 (2014)
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
Vunain E, Opembe NN, Jalama K, Mishra AK, Meijboom R, J. Therm. Anal. Calorim., 115, 1487 (2014)
Sharma S, Singh UP, Singh AP, Polyhedron, 199, 115102 (2021)
Devi TSR, kumar JS, Ramkumaar GR, Acta A, 133, 214 (2014)
Zhang G, Zhao P, Hao L, Xu Y, J. CO2 Util., 24, 22 (2018)
Sun LB, Li AG, Liu XD, Liu XQ, Feng D, Lu W, Yuan D, Zhou HC, J. Mater. Chem. A, 3, 3252 (2015)
Liu L, Zou G, Yang B, Luo X, Xu S, ACS Appl. Nano Mater., 1, 4695 (2018)
Watabe T, Yogo K, Sep. Purif. Technol., 120, 20 (2013)