ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 22, 2022
Accepted May 6, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Solubility enhancement of indigo dye through biochemical reduction and structural modification

1Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Korea 2Department of Life Science, College of Natural Science, Ajou University, Suwon, Gyeonggi-do 16499, Korea 3Amity Institute of Biotechnology, AMITY University Chhattisgarh, India 4Discipline of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat India 5Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do 16499, Korea
Korean Journal of Chemical Engineering, August 2022, 39(8), 2020-2027(8), 10.1007/s11814-022-1165-5
downloadDownload PDF

Abstract

Indigo is one of the most widely used dyes for textiles and is thus produced in large quantities. Owing to its low solubility, a chemical-dependent continuous reduction-oxidation process is often used for indigo dyeing. Unfortunately, the indigo dyeing process has adopted a hazardous reducing agent such as Na2S2O4, to reduce indigo into leucoindigo, thus causing serious water pollution in the process. To avoid this, the use of chemical reducing reagents was banned, creating a need to identify alternative reducing agents or to develop more eco-friendly dyeing processes. In this review, alternative reducing reagents such as biochemicals, plant fruits, biocatalysts, and microbes, which are less harmful to the environment than chemical reducing reagents, are summarized with their reducing reactions and performance. In addition, alternative modifications of indigo that bypass the use of reducing reagents have also been briefly introduced. The reducing chemicals and processes summarized have their respective merits and drawbacks; however, further research is required to obtain profitable dyeing performance that meets economic goals.

References

Choi KY, Dyes Pigment., 181, 108570 (2020)
Saikhao L, Setthayanond J, Karpkird T, Bechtold T, Suwanruji P, J. Clean Prod., 197, 106 (2018)
Mendoza-Avila J, Chauhan K, Vazquez-Duhalt R, Dyes Pigment., 178, 108384 (2020)
Park H, Park G, Jeon W, Ahn JO, Yang YH, Choi KY, Biotechnol. Adv., 40, 107504 (2020)
Ameria SP, Jung HS, Kim HS, Han SS, Kim HS, Lee JH, Biotechnol. Lett., 37, 1637 (2015)
Ma Q, Zhang X, Qu Y, Front. Microbiol., 9, 2625 (2018)
Yi C, Tan X, Bie B, Ma H, Yi H, Sci. Rep., 10, 4927 (2020)
Hmida SB, Ladhari N, Ozone-Sci. Eng., 38, 175 (2016)
Blackburn RS, Harvey A, Environ. Sci. Technol., 38, 4034 (2004)
Nicholson SK, John P, Appl. Microbiol. Biotechnol., 68, 117 (2005)
Pricelius S, Held C, Murkovic M, Bozic M, Kokol V, Cavaco-Paulo A, Guebitz GM, Appl. Microbiol. Biotechnol., 77, 321 (2007)
Hsu TM, Welner DH, Russ ZN, Cervantes B, Prathuri RL, Adams PD, Dueber JE, Nat. Chem. Biol., 14, 256 (2018)
Namgung S, Park HA, Kim J, Lee PG, Kim BG, Yang YH, Choi KY, Dyes Pigment., 162, 80 (2019)
Sadauskas M, Statkevičiūtė R, Vaitekūnas J, Petkevičius V, Časaitė V, Gasparavičiūtė R, Meškys R, Dyes Pigment., 173, 107882 (2020)
Bektas I, Karaman S, Diraz E, Celik M, Cytotechnology, 68, 2245 (2016)
Prinz H, Wiegrebe W, Muller K, J. Org. Chem., 61, 2853 (1996)
de Carvalho LM, Schwedt G, J. Chromatogr. A, 1099, 185 (2005)
Shen Y, Cong W, Zhang AH, Meng X, PLoS One, 15, e0238927 (2020)
Božič M, Kokol V, Dyes Pigment., 76, 299 (2008)
Liu Y, Li Y, Yang Y, Wen Y, Wang M, J. Nanosci. Nanotechnol., 11, 10082 (2011)
Procuranti B, Connon SJ, Chem. Commun., 14, 1421 (2007)
Shin Y, Choi M, Yoo DI, Fashion Textiles, 1, 6 (2014)
Hossain MD, Khan MMR, Uddin MZ, J. Polym. Environ., 25, 1219 (2017)
Pan TT, Sun DW, Pu H, Wei Q, J. Agric. Food Chem., 66, 2180 (2018)
Sun J, Dong J, Han S, Wang Y, Yang Q, Qian W, J. Nanosci. Nanotechnol., 18, 4891 (2018)
Padden AN, John P, Collins MD, Hutson R, Hall AR, J. Archaeological Sci., 27, 953 (2000)
Nakajima K, Hirota K, Nodasaka Y, Yumoto I, Int. J. System. Evolutionary Microbiol., 55, 1525 (2005)
Yumoto I, Hirota K, Nodasaka Y, Tokiwa Y, Nakajima K, Int. J. System. Evolutionary Microbiol., 58, 901 (2008)
Yumoto I, Hirota K, Nodasaka Y, Yokota Y, Hoshino T, Nakajima K, Int. J. System. Evolutionary Microbiol., 54, 2379 (2004)
Hirota K, Aino K, Nodasaka Y, Morita N, Yumoto I, Int. J. System. Evolutionary Microbiol., 63, 464 (2013)
Hirota K, Aino K, Nodasaka Y, Yumoto I, Int. J. System. Evolutionary Microbiol., 63, 1437 (2013)
Tu Z, Lopes HFS, Yumoto I, Int. J. System. Evolutionary Microbiol., 14, 005239 (2022)
Hirota K, Aino K, Yumoto I, Int. J. System. Evolutionary Microbiol, 63, 4303 (2013)
Hirota K, Aino K, Yumoto I, Int. J. System. Evolutionary Microbiol., 66, 2247 (2016)
Hirota K, Nishita M, Matsuyama H, Yumoto I, Int. J. System. Evolutionary Microbiol., 67, 4050 (2017)
Hirota K, Okamoto T, Matsuyama H, Yumoto I, Int. J. System Evolutionary Microbiol., 66, 4650 (2016)
Park S, Ryu JY, Seo J, Hur HG, J. Korean Soc. Appl. Biol. Chem., 55, 83 (2012)
Tu Z, Lopes HFS, Narihiro T, Yumoto I, Front. Microbiol., 12, 698674 (2021)
Mahadevan MM, Weitzman GA, Hogan S, Breckinridge S, Miller MM, Reprod Toxicol., 7, 631 (1993)
Zhu X, Bao L, Wei Y, Ma J, Kong Y, Int. J. Biol. Macromol., 91, 409 (2016)
Suzuki H, Abe T, Doi K, Ohshima T, Appl. Microbiol. Biotechnol., 102, 9171 (2018)
Yoneda K, Yoshioka M, Sakuraba H, Araki T, Ohshima T, Int. J. Biol. Macromol., 164, 3259 (2020)
Yoneda K, Sakuraba H, Araki T, Ohshima T, FEBS Open Bio, 11, 1981 (2021)
Romero E, Savino S, Fraaije MW, Lončar N, ACS Chem. Biol., 15, 504 (2020)
Comisso N, Mengoli G, Environ. Chem. Lett., 1, 229 (2003)
Roessler A, Crettenand D, Dossenbach O, Marte W, Rys P, Electrochim. Acta, 47, 1989 (2002)
Roessler A, Dossenbach O, Rys P, J. Electrochem. Soc., 33, 901 (2003)
Haji A, Naebe M, J. Clean Prod., 265, 121866 (2020)
Sajed T, Haji A, Mehrizi MK, Boroumand MN, Int. J. Biol. Macromol., 107, 642 (2018)
Wang M, Mao M, Zhang M, Wen G, Yang Q, Su B, Ren Q, Waste Manage., 90, 29 (2019)
Crema APS, Borges LDP, Micke GA, Debacher NA, Chemosphere, 244, 125502 (2020)
Zhang RB, Wu Y, Li GF, Wang NH, Li J, J. Environ. Sci., 16, 808 (2004)
Park H, Park S, Yang YH, Choi KY, Crit. Rev. Biotechnol., 41, 879 (2021)
Mani P, Fidal VT, Bowman K, Breheny M, Chandra TS, Keshavarz T, Kyazze G, Front. Energy Res., 7, 101 (2019)
Hirota K, Nishita M, Tu Z, Matsuyama H, Yumoto I, Int. J. System. Evolutionary Microbiol., 68, 1123 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로