ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 8, 2021
Accepted March 20, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The effects of under-ribs convection on enhanced drainage parallel flow field for proton exchange membrane fuel cell

1College of Mechanical and Electronic Engineering, Beijing University of Chemical Technology, Beijing 100029, China 2State Key Laboratory of Organic-Inorganic Composities, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Korean Journal of Chemical Engineering, August 2022, 39(8), 2055-2068(14), 10.1007/s11814-022-1121-4
downloadDownload PDF

Abstract

A new enhanced drainage parallel (EDP) flow field was designed that not only enhances under-rib convection but also enables a more uniform distribution of hydrogen and oxygen. Through the optimization of the model, we established the influence of the flow field size, relative humidity, and stoichiometric ratio on cell performance. When the rib width is reduced, the maximum power density is improved. Compared with the parallel flow field and serpentine flow field, the maximum power density of the EDP flow field was increased by 69.4% and 7.9%, respectively. Under optimal conditions, the net power of the EDP flow field can reach 0.56 W/cm2. In the single-cell test, the maximum power density of the EDP flow field can reach 1.19 W/cm2. This implies that the EDP flow field has potential application of proton exchange membrane fuel cells.

References

Yi P, Zhang D, Qiu D, Peng L, Lai X, Int. J. Hydrog. Energy, 44, 6813 (2019)
Zhu W, Fang JA, Zhang W, Xu Y, Tong L, Arabian J. Sci. Eng., 39, 2869 (2014)
Kahraman H, Cevik I, Dündar F, Ficic F, Arabian J. Sci. Eng., 41, 1961 (2016)
Idibie CA, Abdulkareem SA, Pienaar C, Iyuke SE, Vandyk L, Ind. Eng. Chem. Res., 49, 1600 (2010)
Amadane Y, Mounir H, Marjani AE, Bouhrim H, Rafi MA, Arabian J. Sci. Eng., 45(9), 7587 (2020)
Abdulla S, Patnaikuni VS, Int. J. Hydrog. Energy, 45, 25970 (2020)
Pefeer MF, Cora ON, Kog M, Int. J. Hydrog. Energy, 36, 15427 (2011)
Randrianarizafy B, Schott P, Chandesris M, Gerard M, Bultel Y, Int. J. Hydrog. Energy, 43, 8907 (2018)
El-Dosoky M, Ahmed M, Ashgriz N, Int. J. Energy Res., 42, 1664 (2018)
Khazaee I, Ghazikhani M, Arabian J. Sci. Eng., 38, 2521 (2013)
Lim BH, Majlan EH, Daud WRW, Husaini T, Rosli MI, Ionics, 22, 1 (2016)
Khazaee I, Ghazikhani M, Arabian J. Sci. Eng., 38, 1551 (2013)
Gerteisen D, Heilmann T, Ziegler C, J. Power Sources, 187, 165 (2009)
Xuan L, Hang G, Fang Y, Chong FM, Electrochim. Acta, 52, 3607 (2007)
Prasad K, Jayanti S, J. Power Sources, 180, 227 (2008)
Arvay A, French J, Wang JC, Peng XH, Kannan AM, Int. J. Hydrog. Energy, 38, 3717 (2013)
Khazaee I, Ghazikhani M, Arabian J. Sci. Eng., 37, 2297 (2012)
Dong J, Liu S, Liu S, J. Renew. Sustain. Energy, 12, 044303 (2020)
Kahraman H, Coban A, Arabian J. Sci. Eng., 45, 5143 (2020)
Yan X, Guan C, Zhang Y, Jiang K, Wei G, Cheng X, Shen S, Zhang J, Appl. Therm. Eng., 147, 1107 (2019)
Yoshida T, Kojima K, Electrochem. Soc. Interface, 24, 45 (2015)
Heidary H, Kermani MJ, Dabir B, Energy Conv. Manag., 124, 51 (2016)
Perng SW, Wu HW, Appl. Energy, 143, 81 (2015)
Velisala V, Pullagura G, Yarramsetty N, Vadapalli S, Gorantla KK, Arabian J. Sci. Eng., 46(12), 11687 (2021)
Liu HC, Yang WM, Cheng LS, Tan J, Fuel Cells, 18, 173 (2017)
Shi Z, Xia W, J. Power Sources, 185, 985 (2008)
Hang G, Yue PC, Yan QX, Fang Y, Chong FM, Int. J. Hydrog. Energy, 38, 11028 (2013)
Abdulla S, Seepana MM, Patnaikuni VS, Arabian J. Sci. Eng., 45, 7691 (2020)
Tiss F, Chouikh R, Guizani A, Energy Conv. Manag., 80, 32 (2014)
Baz FB, Ookawara S, Ahmed M, Int. J. Hydrog. Energy, 44, 30644 (2018)
Shimpalee S, Zee J, Int. J. Hydrog. Energy, 32, 842 (2007)
Chowdhury MZ, Genc O, Toros S, Int. J. Hydrog. Energy, 43, 10798 (2018)
Velisala V, Srinivasulu GN, Arabian J. Sci. Eng., 43, 1225 (2018)
Abdulla S, Patnaikuni VS, Int. J. Energy Res., 43, 2806 (2019)
Barbir F, Boston A, London H, York N, Tokyo S, Elsevier Academic Press (2005).
Li W, Zhang Q, Wang C, Yan X, Shen S, Xia G, Zhu F, Zhang J, Appl. Energy, 195, 278 (2017)
Celik E, Karagoz I, J. Power Energy, 234, 1189 (2020)
Liu R, Zhou W, Li S, Li F, Ling W, Int. J. Hydrog. Energy, 45, 17833 (2020)
Liang H, Ming HA, Yga B, Dfa B, Pwa B, Bo L, Zs A, Energy Conv. Manag., 205, 112335 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로