ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 5, 2022
Accepted February 23, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Preparation of N and Eu doped TiO2 using plasma in liquid process and its photocatalytic degradation activity for diclofenac

Department of Environmental Engineering, Sunchon National University, Sunchon 57922, Korea 1School of Environmental Engineering, University of Seoul, Seoul 02504, Korea
jsc@sunchon.ac.kr
Korean Journal of Chemical Engineering, August 2022, 39(8), 2080-2088(9), 10.1007/s11814-022-1093-4
downloadDownload PDF

Abstract

Pharmaceutical contaminants such as diclofenac (DCF) cannot be removed in existing wastewater treatment facilities; therefore, studies on application of new treatment processes and improvement of efficiency are required. In this study, a modified photocatalyst doped with nitrogen and europium was prepared and the performance of DCF was evaluated. A modified photocatalyst that responds to visible light was prepared by precipitating nitrogen and europium in a TiO2 powder using a plasma-in-liquid process (PLP). The performance of the photocatalyst was evaluated by a degradation experiment of diclofenac, a pharmaceutical ingredient. The dopant tended to precipitate in proportion to the amount of precursor added, but more nitrogen precipitated than europium even when the same amount was added. Nitrogen and europium were dispersed evenly throughout the TiO2 powder, and the Ti2p peak position of the modified TiO2 photocatalyst (MTP) coincided with bare TiO2, and europium precipitated in the form of Eu2O3. The bandgap energy of the MTPs was lower than that of unmodified TiO2 photocatalyst, but the MTP with only europium precipitated was the lowest. When a blue light source in the visible region was used, DCF decomposition by MTPs was improved by about 15 to 25 times compared to bare TiO2, and europium precipitation photocatalyst had the highest DCF decomposition characteristic. In addition, MTPs showed excellent reusability properties. Four kinds of by-products were detected in the decomposition process of DCF, and three decomposition pathways by reactions such as decarboxylation, C-N cleavage and hydroxylation were considered. The final mineralization to H2O, CO2, and chlorine occurs by hydroxylation, such as by OH, on the MTP.

References

Holloway KA, Expert Rev. Clin. Pharmacol., 4, 335 (2011)
Busfield J, Soc. Sci. Med., 131, 199 (2015)
der Beek TA, Weber FA, Bergmann A, Hickmann S, Ebert I, Hein A, Küster A, Environ. Toxicol. Chem., 35, 823 (2016)
Swan GE, Cuthbert R, Quevedo M, Green RE, Pain DJ, Bartels P, Cunningham AA, Duncan N, Meharg AA, Oaks JL, Jones JP, Shultz S, Taggart MA, Verdoorn G, Wolter K, Biol. Lett., 2, 279 (2006)
Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J, Aquat. Toxicol., 68, 151 (2004)
Zhang L, Liu Y, Fu Y, RSC Adv., 10, 9907 (2020)
Kanakaraju D, Motti CA, Glass BD, Oelgemoller M, Environ. Chem., 11, 51 (2014)
Irandost M, Akbarzadeh R, Pirsaheb M, Asadi A, Mohammadi P, Sillanpaa M, J. Mol. Liq., 291, 111342 (2019)
Lu X, Shao Y, Gao N, Chen J, Zhang Y, Xiang H, Guo Y, Ecotox. Environ. Safe., 141, 139 (2017)
Ki SJ, Jeon KJ, Park YK, Jeong S, Lee H, Jung SC, Catal. Today, 293, 15 (2017)
Lee H, Park SH, Park YK, Kim SJ, Seo SG, Ki SJ, Jung SC, Chem. Eng. J., 278, 259 (2015)
Jung SC, Water Sci. Technol., 63, 1491 (2011)
Lee DJ, Park YK, Kim SJ, Lee H, Jung SC, Korean J. Chem. Eng., 32, 1188 (2015)
Hua Z, Dai Z, Bai X, Ye Z, Gua H, Huang X, J. Hazard. Mater., 293, 112 (2015)
Lee H, Park YK, Kim SJ, Kim BH, Jung SC, J. Ind. Eng. Chem., 32, 259 (2015)
Zhang Y, Li Q, Solid State Sci., 16, 16 (2013)
Ki SJ, Park YK, Kim JS, Lee WJ, Lee H, Jung SC, Chem. Eng. J., 377, 120087 (2019)
Lee H, Park IS, Bang HJ, Park YK, Kim H, Ha HH, Kim BJ, Jung SC, Appl. Surf. Sci., 471, 893 (2019)
Lee H, Park IS, Bang HJ, Park YK, Cho EB, Kim BJ, Jung SC, Appl. Surf. Sci., 481, 625 (2019)
Kim SC, Park YK, Jung SC, Korean J. Chem. Eng., 38, 885 (2021)
Chung KH, Jeong S, Lee H, Kim SJ, Jeon KJ, Park YK, Jung SC, Int. J. Hydrog. Energy, 42, 24099 (2017)
Lee H, Park SH, Seo SG, Kim SJ, Kim SC, Park YK, Jung SC, Curr. Nanosci., 10, 7 (2014)
Kim SC, Park YK, Kim BH, Kim H, Lee WJ, Lee H, Jung SC, Korean J. Chem. Eng., 35, 750 (2018)
Jeong S, Chung KH, Lee H, Park H, Jeon KJ, Park YK, Jung SC, ACS Sustain. Chem. Eng., 5, 3659 (2017)
Lee H, Kim BH, Park YK, An KH, Choi YJ, Jung SC, Int. J. Hydrog. Energy, 41, 7582 (2016)
Mun MK, Lee WO, Park JW, Kim DS, Yeom GY, Kim DW, Appl. Sci. Converg. Technol., 26, 164 (2017)
Pitchaimuthu S, Honda K, Suzuki S, Naito A, Suzuki N, Katsumata K, Nakata K, Ishida N, Kitamura N, Idemoto Y, Kondo T, ACS Omega, 3, 898 (2018)
Heo YK, Bratescu MA, Ueno T, Saito N, J. Appl. Phys., 116, 024302 (2014)
Ihnatiuk D, Tossi C, Tittonen I, Linnik O, Catalysts, 10, 1074 (2020)
Anwer S, Bharath G, Iqbal S, Qian H, Masood T, Liao K, Cantwell WJ, Zhang J, Zheng L, Electrochim. Acta, 283, 1095 (2018)
Tian J, Gao H, Kong H, Yang P, Zhang W, Chu J, Nanoscale Res. Lett., 8, 533 (2013)
Camps I, Borlaf M, Colomer MT, Moreno R, Duta L, Nita C, del Pino AP, Logofatu C, Serna R, Gyorgy E, RSC Adv., 7, 37643 (2017)
Chen D, Jiang Z, Geng J, Wang Q, Yang D, Ind. Eng. Chem. Res., 46, 2741 (2007)
Yan G, Zhang M, Hou J, Yang J, Mater. Chem. Phys., 1129, 553 (2011)
Khan TT, Bari GAKMR, Kang HJ, Lee TG, Park JW, Hwang HJ, Hossain SM, Mun JS, Suzuki N, Fujishima A, Catalysts, 11, 109 (2021)
Liu WQ, Wu D, Chang H, Duan RX, Wu WJ, Amu G, Chao KF, Bao FQ, Tegus O, Nanomaterials, 8, 66 (2018)
Zeng CH, Zheng K, Lou KL, Meng XT, Yan ZQ, Ye ZN, Su RR, Zhong S, Electrochim. Acta, 165, 396 (2015)
Ansari SA, Khan MM, Ansari MO, Cho MH, New J. Chem., 40, 3000 (2016)
Myilsamy M, Mahalakshmi M, Subha N, Rajabhuvaneswari A, Murugesan V, RSC Adv., 6, 35024 (2016)
Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V, Water Res., 43, 979 (2009)
Di Credico B, Bellobono R, D’Arienzo M, Fumagalli D, Redaelli M, Scotti R, Morazzoni F, Int. J. Photoenergy, 2015, 919217 (2015)
Lx LAM, González AE, Cipagauta-Díaz S, Gómez R, J. Chem. Technol. Biotechnol., 95, 2694 (2020)
Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N, J. Am. Chem. Soc., 131, 12290 (2009)
Chen D, Zhu Q, Lv Z, Deng X, Zhou F, Deng Y, Mater. Res. Bull., 47, 3129 (2012)
Ramandi S, Entezari MH, Ghows N, Ultrason. Sonochem., 38, 234 (2017)
Nguyen TP, Tran QB, Ly QV, Hai LT, Le DT, Tran MB, Ho TTT, Nguyen XC, Shokouhimehr M, Vo DVN, Arab. J. Chem., 13, 8361 (2020)
Xu J, Ao Y, Fu D, Yuan C, J. Colloid Interface Sci., 328, 447 (2008)
Hu Z, Cai X, Wang Z, Li S, Wang Z, Xie X, J. Hazard. Mater., 380, 120812 (2019)
Shi H, Zhou G, Liu Y, Fu Y, Wang H, Wu P, RSC Adv., 9, 31370 (2019)
Michael I, Achilleos A, Lambropoulou D, Torrens VO, Pérez S, Petrovic M, Barceló D, Fatta-Kassinos D, Appl. Catal. B: Environ., 147, 1015 (2014)
Nie E, Yang M, Wang D, Yang X, Luo X, Zheng Z, Chemosphere, 113, 165 (2014)
Yu H, Nie E, Xu J, Yan S, Cooper WJ, Song W, Water Res., 47, 1909 (2013)
Salaeh S, Perisic DJ, Biosic M, Kusic H, Babic S, Stangar UL, Dionysiou DD, Bozic AL, Chem. Eng. J., 304, 289 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로