Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 15, 2021
Accepted May 14, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Adsorption behavior of phosphate on 2-L ferrihydrite adsorbent predicted by partial charge model under varying pH conditions
Resources Development Research Institute, Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
Korean Journal of Chemical Engineering, August 2022, 39(8), 2117-2126(10), 10.1007/s11814-022-1180-6
Download PDF
Abstract
The surface charge of the adsorbent 2-L ferrihydrite was calculated by the partial charge model for varying pH conditions. The value of the surface charge was used to predict the ability of the adsorbent to chemically adsorb and desorb the adsorbate. The crystal structure of the 2-L ferrihydrite material was regarded as two models: an exclusively octahedral model and a combined model comprising 20% tetrahedra and 80% octahedra. The partial charge model was used to calculate the surface charge of the adsorbent under varying pH conditions. In the exclusively octahedral model, the surface charge reached the highest value of +0.060 under acidic conditions, -0.088 in the neutral state, and the lowest value of -0.347 under alkaline conditions. In the case of the combined model, δ(OH) had the highest value of +0.056 under acidic conditions, -0.087 in the neutral state, and the lowest value of -0.332 under alkaline conditions. As a result, we confirmed that the surface charge of the adsorbent could have a positive value even in an acidic environment. That is, the surface charge of the adsorbent could become positive or negative according to the pH of the solution. In a solution in which the pH is below 10, the adsorbent could adsorb the negative phosphate because the δ(OH) would be positive. In contrast, in a solution with pH>10, the adsorbent could desorb the negative phosphate because the δ(OH) would be negative.
Keywords
References
Feng Y, Zhao D, Qiu S, He Q, Luo Y, Zhang K, Shen S, ACS Omega, 6, 33046 (2021)
Xia P, Wang X, Wang X, Zhang J, Wang H, Song J, Ma R, Wang J, Zhao J, J. Chem. Eng. Data, 62, 226 (2017)
Chen M, Huo C, Li Y, Wang J, ACS Sustainable Chem. Eng., 4, 1296 (2016)
Wang P, Li L, Tian Y, Sun L, Zhan W, Chen S, Zhang J, Zuo W, Sci. Total Environ., 809, 152124 (2022)
Sun Y, Feng X, Zheng W, J. Chem. Eng. Data, 65, 4512 (2020)
Yang X, Wei Y, Jiang Y, Wang Y, Chen L, Peng L, Zhang S, Yan Y, Yan Y, Ind. Eng. Chem. Res., 60, 5352 (2021)
Kataria N, Garg VK, Chemosphere, 208, 818 (2019)
Naushad M, Ahamad T, Khalid AA, Al-Muhtaseb AH, Eldesoky GE, Khan AA, Compos. Part B, 172, 179 (2019)
Kubicki JD, Kabengi N, Chrysochoou M, Bompoti N, Geochem. Trans., 19, 8 (2018)
Mamuna AA, Moritaa M, Matsuokab M, Tokorob C, J. Hazard. Mater., 334, 142 (2017)
Tian L, Liang Y, Lu Y, Peng L, Wu P, Shi Z, Soil Sci. Soc. Am. J., 82, 96 (2018)
Kim SO, Lee WC, Cho HG, Lee BT, Lee PK, Choi SH, Environ. Technol., 35, 251 (2014)
Yoo SJ, Korean J. Chem. Eng., 38, 326 (2021)
Tian L, Shi Z, Lu Y, Dohnalkova AC, Lin Z, Dang Z, Environ. Sci. Technol., 51, 10605 (2017)
Funnell NP, Fulford MF, Inoue S, Kletetschka K, Michel FM, Goodwin AL, Commun. Chem., 3, 1 (2020)
Masina CJ, Neethling JH, Olivier EJ, Manzini S, Lodya L, Srot V, van Aken PA, RSC Adv., 5, 39643 (2015)
Carta D, Casula MF, Corrias A, Falqui A, Navarra G, Pinna G, Mater. Chem. Phys., 113, 349 (2009)
Stolyar SV, Balaev DA, Krasikov AA, Dubrovskiy AA, Yaroslavtsev RN, Bayukov OA, Volochaev MN, Iskhakov RS, J. Supercond. Novel Magn., 31, 1133 (2018)
Manceau A, Earth Space Chem., 3, 1576 (2019)
Mailot F, Morin G, Wang Y, Bonnin D, Ildefonse P, Channe C, Calas G, Geochim. Cosmochim. Acta, 75, 2708 (2011)
Rancourt DG, Meunier JF, Am. Mineral., 93, 1412 (2008)
Manceau A, Gates WP, Clay Clay Min., 45, 448 (1997)
Drits VA, Sakharov BA, Salyn AL, Manceau A, Clay Min., 28, 185 (1993)
Hiemstra T, Geochim. Cosmochim. Acta, 105, 316 (2013)
Cornell RM, Schwertmann U, The iron oxides: structure, properties, reactions, occurrences, and uses, Wiley-VCH, Weinheim (1996).
Camos-Pereira H, Kleja DB, Sjöstedt C, Ahrens L, Klysubun W, Gustafsson JP, Environ. Sci. Technol., 54, 15722 (2020)
Wu B, Lo IMC, Environ. Sci. Technol., 54, 4601 (2020)
Suratwala T, Steele R, Miller PE, Wong L, Destino JF, Feigenbaum E, Shen N, Feit M, J. Am. Ceram. Soc., 102, 1566 (2019)
Martakov IS, Shevchenko OG, Torlopov MA, Gerasimov EY, Sitnikov PA, J. Inorg. Biochem., 199, 110782 (2019)
Mendoza-Serna R, J. Porous Mat., 10, 31 (2003)
Ranjit KT, Martyanov I, Demydov D, Uma S, Rodrigues S, Klabunde KJ, J. Sol-Gel Sci. Technol., 40, 335 (2006)
Livage J, Henry M, Sanchez C, Prog. Solid State Chem., 18, 259 (1988)
Mackenzie JD, Ulrich DR, Ultrastructure processing of advanced ceramics, Wiley, New York (1988).
Klopman GA, J. Am. Chem. Soc., 86, 1463 (1964)
Pearson RG, J. Org. Chem., 54, 1423 (1989)
Kobayashi Y, Fukushi K, Kosugi S, Environ. Sci. Technol., 54, 2304 (2020)
Barnard AS, Guo H, Nature’s nanostructures, Pan Stanford Publishing, Singapore (2012).
Jambor JL, Dutrizac JE, Chem. Rev., 98, 2549 (1998)
Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB, Science, 316, 1726 (2007)
Sadeghi O, Zakharov LN, Nyman M, Science, 316, 1359 (2015)
Smith SJ, Page K, Kim H, Campbell BJ, Boerio-Goates J, Woodfield BF, Inorg. Chem., 51, 6421 (2012)
Shi M, Min X, Ke Y, Lin Z, Yang Z, Wang S, Peng N, Yan X, Luo S, Wu J, Wei YR, Sci. Total Environ., 752, 141930 (2021)
Hiemstra T, Environ. Sci. Nano, 6, 752 (2018)
Zhu BS, Jia Y, Jin Z, Sun B, Luo T, Kong LT, RSC Adv., 5, 84389 (2015)
Rout K, Mohapatra M, Anand S, Dalton Trans., 41, 3302 (2012)
Frau F, Addari D, Atzel D, Biddau R, Cidu R, Rossi A, Water Air Soil Pollut., 205, 25 (2010)
Zhang X, Chen Y, Zhao N, Liu H, Wei Y, RSC Adv., 4, 21575 (2014)
Janney DE, Cowley JM, Buseck PR, Clay Clay Min., 48, 111 (2000)
Chappell HF, Thom W, Bowron DT, Faria N, Hasnip PJ, Powell JJ, Phys. Rev. Mater., 1, 036002-1 (2017)
Donohue MD, Aranovich GL, Adv. Colloid Interface Sci., 76-77, 137 (1998)
Regalbuto JR, Catalyst preparation science and engineering, CRC Press, New York (2007).
Richards R, Surface and nanomolecular catalysis, CRC Press, New York (2006).
Saha B, Bains R, Greenwood F, Sep. Sci. Technol., 40, 2909 (2005)
Xia P, Wang X, Wang X, Zhang J, Wang H, Song J, Ma R, Wang J, Zhao J, J. Chem. Eng. Data, 62, 226 (2017)
Chen M, Huo C, Li Y, Wang J, ACS Sustainable Chem. Eng., 4, 1296 (2016)
Wang P, Li L, Tian Y, Sun L, Zhan W, Chen S, Zhang J, Zuo W, Sci. Total Environ., 809, 152124 (2022)
Sun Y, Feng X, Zheng W, J. Chem. Eng. Data, 65, 4512 (2020)
Yang X, Wei Y, Jiang Y, Wang Y, Chen L, Peng L, Zhang S, Yan Y, Yan Y, Ind. Eng. Chem. Res., 60, 5352 (2021)
Kataria N, Garg VK, Chemosphere, 208, 818 (2019)
Naushad M, Ahamad T, Khalid AA, Al-Muhtaseb AH, Eldesoky GE, Khan AA, Compos. Part B, 172, 179 (2019)
Kubicki JD, Kabengi N, Chrysochoou M, Bompoti N, Geochem. Trans., 19, 8 (2018)
Mamuna AA, Moritaa M, Matsuokab M, Tokorob C, J. Hazard. Mater., 334, 142 (2017)
Tian L, Liang Y, Lu Y, Peng L, Wu P, Shi Z, Soil Sci. Soc. Am. J., 82, 96 (2018)
Kim SO, Lee WC, Cho HG, Lee BT, Lee PK, Choi SH, Environ. Technol., 35, 251 (2014)
Yoo SJ, Korean J. Chem. Eng., 38, 326 (2021)
Tian L, Shi Z, Lu Y, Dohnalkova AC, Lin Z, Dang Z, Environ. Sci. Technol., 51, 10605 (2017)
Funnell NP, Fulford MF, Inoue S, Kletetschka K, Michel FM, Goodwin AL, Commun. Chem., 3, 1 (2020)
Masina CJ, Neethling JH, Olivier EJ, Manzini S, Lodya L, Srot V, van Aken PA, RSC Adv., 5, 39643 (2015)
Carta D, Casula MF, Corrias A, Falqui A, Navarra G, Pinna G, Mater. Chem. Phys., 113, 349 (2009)
Stolyar SV, Balaev DA, Krasikov AA, Dubrovskiy AA, Yaroslavtsev RN, Bayukov OA, Volochaev MN, Iskhakov RS, J. Supercond. Novel Magn., 31, 1133 (2018)
Manceau A, Earth Space Chem., 3, 1576 (2019)
Mailot F, Morin G, Wang Y, Bonnin D, Ildefonse P, Channe C, Calas G, Geochim. Cosmochim. Acta, 75, 2708 (2011)
Rancourt DG, Meunier JF, Am. Mineral., 93, 1412 (2008)
Manceau A, Gates WP, Clay Clay Min., 45, 448 (1997)
Drits VA, Sakharov BA, Salyn AL, Manceau A, Clay Min., 28, 185 (1993)
Hiemstra T, Geochim. Cosmochim. Acta, 105, 316 (2013)
Cornell RM, Schwertmann U, The iron oxides: structure, properties, reactions, occurrences, and uses, Wiley-VCH, Weinheim (1996).
Camos-Pereira H, Kleja DB, Sjöstedt C, Ahrens L, Klysubun W, Gustafsson JP, Environ. Sci. Technol., 54, 15722 (2020)
Wu B, Lo IMC, Environ. Sci. Technol., 54, 4601 (2020)
Suratwala T, Steele R, Miller PE, Wong L, Destino JF, Feigenbaum E, Shen N, Feit M, J. Am. Ceram. Soc., 102, 1566 (2019)
Martakov IS, Shevchenko OG, Torlopov MA, Gerasimov EY, Sitnikov PA, J. Inorg. Biochem., 199, 110782 (2019)
Mendoza-Serna R, J. Porous Mat., 10, 31 (2003)
Ranjit KT, Martyanov I, Demydov D, Uma S, Rodrigues S, Klabunde KJ, J. Sol-Gel Sci. Technol., 40, 335 (2006)
Livage J, Henry M, Sanchez C, Prog. Solid State Chem., 18, 259 (1988)
Mackenzie JD, Ulrich DR, Ultrastructure processing of advanced ceramics, Wiley, New York (1988).
Klopman GA, J. Am. Chem. Soc., 86, 1463 (1964)
Pearson RG, J. Org. Chem., 54, 1423 (1989)
Kobayashi Y, Fukushi K, Kosugi S, Environ. Sci. Technol., 54, 2304 (2020)
Barnard AS, Guo H, Nature’s nanostructures, Pan Stanford Publishing, Singapore (2012).
Jambor JL, Dutrizac JE, Chem. Rev., 98, 2549 (1998)
Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB, Science, 316, 1726 (2007)
Sadeghi O, Zakharov LN, Nyman M, Science, 316, 1359 (2015)
Smith SJ, Page K, Kim H, Campbell BJ, Boerio-Goates J, Woodfield BF, Inorg. Chem., 51, 6421 (2012)
Shi M, Min X, Ke Y, Lin Z, Yang Z, Wang S, Peng N, Yan X, Luo S, Wu J, Wei YR, Sci. Total Environ., 752, 141930 (2021)
Hiemstra T, Environ. Sci. Nano, 6, 752 (2018)
Zhu BS, Jia Y, Jin Z, Sun B, Luo T, Kong LT, RSC Adv., 5, 84389 (2015)
Rout K, Mohapatra M, Anand S, Dalton Trans., 41, 3302 (2012)
Frau F, Addari D, Atzel D, Biddau R, Cidu R, Rossi A, Water Air Soil Pollut., 205, 25 (2010)
Zhang X, Chen Y, Zhao N, Liu H, Wei Y, RSC Adv., 4, 21575 (2014)
Janney DE, Cowley JM, Buseck PR, Clay Clay Min., 48, 111 (2000)
Chappell HF, Thom W, Bowron DT, Faria N, Hasnip PJ, Powell JJ, Phys. Rev. Mater., 1, 036002-1 (2017)
Donohue MD, Aranovich GL, Adv. Colloid Interface Sci., 76-77, 137 (1998)
Regalbuto JR, Catalyst preparation science and engineering, CRC Press, New York (2007).
Richards R, Surface and nanomolecular catalysis, CRC Press, New York (2006).
Saha B, Bains R, Greenwood F, Sep. Sci. Technol., 40, 2909 (2005)