ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 26, 2022
Accepted April 14, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Biohydrogen production from glycerol by novel Clostridium sp. SH25 and its application to biohydrogen car operation

Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea 1Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do 31056, Korea 2School of Civil and Environmental Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea 3Biotechnology Process Engineering, Korea Research Institute Bioscience Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
seokor@konkuk.ac.kr
Korean Journal of Chemical Engineering, August 2022, 39(8), 2156-2164(9), 10.1007/s11814-022-1146-8
downloadDownload PDF

Abstract

Biohydrogen is a clean and efficient source of energy produced easily by anaerobic systems. Therefore, the discovery of novel and efficient production methods and utilization of inexpensive starting material are crucial for economical biohydrogen production. In this study, novel hydrogen producing bacterial strain Clostridium sp. SH25 was screened from the anaerobic sludge obtained from a water treatment plant, which showed a higher hydrogen-producing activity on glycerol than other strains. The effective hydrogen production was evaluated under varying anaerobic culture conditions, and the optimum temperature, initial pH, additional NaCl concentration, and inoculum size were 37 ℃, 6.0, 0%, and 10% (v/v), respectively. The cumulative hydrogen production volume from crude glycerol was 24.30±1.07ml after 36 h. To test the practical application of biohydrogen, a 20ml culture of Clostridium sp. SH25 was incubated for 12 h and directly applied to a small hydrogen car unit operated for 19.05±0.33 s with 8.37±0.21m displacement. Overall, identification of the efficient Clostridium sp. SH25 strain resulted in the production of a large amount of biohydrogen, which further supported the operation of a small hydrogen car. This implied a possible application of biosystems in biohydrogen production.

References

Urry J, Theory, Cult. Soc., 31, 3 (2014)
Andres RJ, Boden TA, Bréon FM, Ciais P, Davis S, Erickson D, Gregg JS, Jacobson A, Marland G, Miller J, Oda T, Biogeosciences, 9, 1845 (2012)
Lincoln SF, Ambio, 34, 621 (2016)
Song HS, Seo HM, Jeon JM, Moon YM, Hong JW, Hong YG, Bhatia SK, Ahn J, Lee H, Kim W, Park YC, Choi KY, Biotechnol. Bioeng., 115, 1971 (2018)
Sarkar N, Ghosh SK, Bannerjee S, Aikat K, Renew. Energy, 37, 19 (2012)
Chi J, Yu H, Chin. J. Catal., 39, 390 (2018)
Singh V, Yadav S, Sen R, Das D, Int. J. Hydrog. Energy, 45, 24477 (2020)
Das D, Veziroglu TN, Int. J. Hydrog. Energy, 33, 6046 (2008)
Nikolaidis P, Poullikkas A, Renew. Sust. Energ. Rev., 67, 597 (2017)
Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, Rao CV, Atabani AE, Kumar G, Yang YH, Sci. Total Environ., 765, 144429 (2021)
Dincer I, Acar C, Int. J. Hydrog. Energy, 40, 11094 (2014)
Wang J, Yin Y, Renew. Sust. Energ. Rev., 92, 284 (2018)
Shuba ES, Kifle D, Renew. Sust. Energ. Rev., 81, 743 (2018)
Sharma A, Arya SK, Biotechnol. Rep., 15, 63 (2017)
Khan MA, Ngo HH, Guo WS, Liu Y, Nghiem LD, Hai FI, Deng LJ, Wang J, Wu Y, Bioresour. Technol., 219, 738 (2016)
Sinha P, Pandey A, Int. J. Hydrog. Energy, 39, 7518 (2014)
Asadi N, Zilouei H, Bioresour. Technol., 227, 335 (2017)
Hung CH, Chang YT, Chang YJ, Bioresour. Technol., 102, 8437 (2011)
Taguchi F, Chang JD, Mizukami N, Saito-taki T, Hasegawa K, Morimoto M, Can. J. Microbiol., 39, 7 (1993)
Liu IC, Whang LM, Ren WJ, Lin PY, Int. J. Hydrog. Energy, 36, 439 (2011)
Chen WM, Tseng ZJ, Lee KS, Chang JS, Int. J. Hydrog. Energy, 30, 1063 (2011)
Silva FMS, Oliveira LB, Mahler CF, Bassin JP, Int. J. Hydrog. Energy, 42, 22720 (2017)
Sarma SJ, Brar SK, Bihan YL, Buelna G, Soccol CR, J. Chem. Technol. Biotechnol., 88, 2264 (2013)
Olabi AG, Mahmoud M, Soudan B, Wilberforce T, Ramadan M, Renew. Energy, 147, 2003 (2020)
Riti JS, Shu Y, Energy Sustain. Soc., 6 (2016)
Atadashi IM, Aroua MK, Aziz AA, Renew. Energy, 36, 437 (2011)
Bhatia SK, Joo HS, Yang YH, Energy Conv. Manag., 177, 640 (2018)
Samul D, Leja K, Grajek W, Ann. Microbiol., 64, 891 (2014)
Barbirato F, Himmi H, Conte T, Bories A, Ind. Crop. Prod., 7, 281 (1998)
Dharmadi Y, Murarka A, Gonzalez R, Biotechnol. Bioeng., 94, 821 (2006)
Colin T, Bories A, Lavigne C, Moulin G, Curr. Microbiol., 43, 238 (2001)
Petrov K, Petrova P, Appl. Microbiol. Biotechnol., 84, 659 (2009)
Chookaew T, Thong SO, Prasertsan P, Int. J. Hydrog. Energy, 39, 9580 (2014)
Choi WJ, Hartono MR, Chan WH, Yeo SS, Appl. Microbiol. Biotechnol., 89, 1255 (2011)
Sattayasamitsathit S, Methacanon P, Prasertsan P, Electron. J. Biotechnol., 14, 6 (2011)
Park YL, Bhatia SK, Gurav R, Choi TR, Kim HJ, Song HS, Park JY, Han YH, Lee SM, Park SL, Lee HS, Kim YG, Yang YH, Int. J. Biol. Macromol., 154, 929 (2020)
Park SL, Cho JY, Choi TR, Song HS, Bhatia SK, Gurav R, Park SH, Park K, Joo JC, Hwang SY, Yang YH, Int. J. Biol. Macromol., 177, 413 (2021)
Park YL, Choi TR, Han YH, Song HS, Park JY, Bhatia SK, Gurav R, Choi KY, Kim YG, Yang YH, J. Biotechnol., 322, 21 (2020)
Yin Y, Wang J, Int. J. Hydrog. Energy, 42, 12173 (2017)
Choi TR, Jeon JM, Bhatia SK, Gurav R, Han YH, Park YL, Park JY, Song HS, Park HY, Yoon JJ, Seo SO, Yang YH, Bioprocess Eng., 25, 279 (2020)
Jeon JM, Park H, Seo HM, Kim JH, Bhatia SK, Sathiyanarayanan G, Song HS, Park SH, Choi KY, Sang BI, Yang YH, Bioprocess. Biosyst. Eng., 38, 2147 (2015)
Xiao B, Liu J, J. Hazard. Mater., 168, 163 (2009)
Kotay SM, Das D, Bioresour. Technol., 98, 1183 (2007)
Fang HHP, Zhang T, Liu H, Appl. Microbiol. Biotechnol., 58, 112 (2002)
Colleran E, Concannon F, Golden T, Geoghegan F, Crumlish B, Killilea E, Henry M, Coates J, Water Sci. Technol., 25, 31 (1992)
Nelson MC, Morrison M, Yu Z, Bioresour. Technol., 102, 3730 (2011)
Winkler MKH, Kleerebezem R, De Bruin LMM, Verheijen PJT, Abbas B, Habermacher J, Van Loosdrecht MCM, Appl. Microbiol. Biotechnol., 97, 7447 (2013)
Haron R, Mat R, Abdullah TAT, Rahman RA, J. Clean Prod., 172, 314 (2018)
Son YS, Jeon JM, Kim DH, Yang YH, Jin YS, Cho BK, Kim SH, Kumar S, Lee BD, Yoon JJ, Int. J. Hydrog. Energy, 46, 36687 (2021)
Jo JH, Lee DS, Kim J, Park JM, J. Microbiol. Biotechnol., 19, 291 (2009)
Kim SH, Han SK, Shin HS, Process Biochem., 41, 199 (2006)
Wang X, Jin B, J. Biosci. Bioeng., 107, 138 (2009)
Sarma S, Dubey VK, Moholkar VS, Int. J. Hydrog. Energy, 41, 19972 (2016)
Singh V, Singh H, Das D, Int. J. Hydrog. Energy, 44, 26905 (2019)
Jo JH, Lee DS, Park D, Park JM, Int. J. Hydrog. Energy, 33, 5176 (2018)
Skonieczny MT, Yargeau V, Int. J. Hydrog. Energy, 34, 3288 (2009)
Khanal SK, Chen WH, Li L, Sung S, Int. J. Hydrog. Energy, 29, 1123 (2004)
Seifert K, Waligorska M, Wojtowski M, Laniecki M, Int. J. Hydrog. Energy, 34, 3671 (2009)
Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N, J. Biosci. Bioeng., 100, 260 (2005)
Ngo TA, Kim MS, Sim SJ, Int. J. Hydrog. Energy, 36, 5836 (2011)
Miyake J, Ogawa Y, Tanaka T, Ahn J, Oka K, Oyaizu K, Miyatake K, Commun. Chem., 3, 138 (2020)
Kumar SS, Himabindu V, Mater. Sci. Energy Technol., 2, 442 (2019)
Prokopius K, Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant Test Report: Initial Benchmark Tests in the Original Orientation (2011).
Lo YC, Chen XJ, Huang CY, Yuan YJ, Chang JS, Int. J. Hydrog. Energy, 38, 15815 (2013)
Jáuregui MA, Ladino A, Malagón-Romero D, Int. J. Sustain. Eng., 11, 205 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로