ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 16, 2021
Accepted December 15, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Structure determination of clathrate hydrates formed from alcoholic guests with NH4F and H2O

1Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Korea 2Department of Energy and Resources Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea 3Department of Energy and Resource Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea 4Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea
minjun.cha@kangwon.ac.kr
Korean Journal of Chemical Engineering, August 2022, 39(8), 2211-2216(6), 10.1007/s11814-021-1044-5
downloadDownload PDF

Abstract

The characteristic behavior of alcohol guest inclusions and interactions occurring within binary cyclobutanemethanol (CBM)+methanol (MeOH) and cyclopentanemethanol (CPeM)+MeOH hydrates with hydrate lattices consisting of NH4F and H2O was investigated using crystal structure analysis with Rietveld refinement. The crystal structure of our hydrate systems was in the cubic Fd-3m space group. CBM or CPeM was captured within the large 51264 cages of structure II (sII) hydrates, but the effective molecular size of CBM and CPeM was larger than the large cavity size of common sII hydrates. Therefore, the hydroxyl moiety of the CBM and CPeM could interact with the host framework of clathrate hydrates via hydrogen bonding. Similarly, MeOH was encapsulated within the small 512 cages of the sII hydrates, but the Rietveld analysis results indicated that the thermal displacement parameters of the encapsulated MeOH were abnormally high, suggesting off-centered positioning of MeOH and potential host-guest interaction within the small 512 cages of the sII hydrates. These results provide useful insight into the complex nature of host-guest inclusion chemistry.

References

Sloan ED, Nature, 426, 353 (2003)
Sloan ED, Koh CA, Clathrate hydrates of natural gases, 3rd ed., CRC Press, Boca Raton (2008).
Mimachi H, Takeya S, Yoneyama A, Hyodo K, Takeda T, Gotoh Y, Murayama T, Chem. Eng. Sci., 118, 208 (2014)
Machida S, Hirai H, Kawamura T, Yamamoto Y, Yagi T, J. Phys. Chem. Solids, 71, 1324 (2010)
Ogawa H, Imura N, Miyoshi T, Ohmura R, Mori YH, Energy Fuels, 23, 849 (2009)
Yoon JH, Han J, Park J, Choi S, Yeon SH, Lee H, J. Phys. Chem. Solids, 69, 1432 (2008)
Park KH, Kim DH, Cha M, Chem. Eng. J., 421, 127835 (2020)
Ko G, Lee J, Seo Y, Chem. Eng. J., 405, 126956 (2021)
Ikeda T, Yamamuro O, Matsuo T, Mori K, Torii S, Kamiyama T, Izumi F, Ikeda S, Mae S, J. Phys. Chem. Solids, 60, 1527 (1999)
Cha I, Lee S, Lee JD, Lee GW, Seo Y, Environ. Sci. Technol., 44, 6117 (2010)
Belosludov VR, Bozhko YY, Gets KV, Subbotin OS, Kawazoe Y, J. Phys. Conf. Ser., 1128, 012086 (2018)
Falenty A, Kuhs WF, Glockzin M, Rehder G, Energy Fuels, 28, 6275 (2014)
Park KH, Jeong D, Yoon JH, Cha M, Fluid Phase Equilib., 493, 43 (2019)
Cha M, Shin K, Kim J, Chang D, Seo Y, Lee H, Kang SP, Chem. Eng. Sci., 99, 184 (2013)
Cha M, Shin K, Lee H, Korean J. Chem. Eng., 34, 2514 (2017)
Max JJ, Daneault S, Chapados C, Can. J. Chem., 80, 113 (2002)
Alavi S, Takeya S, Ohmura R, Woo TK, Ripmeester JA, J. Chem. Phys., 133, 074505 (2010)
Park KH, Cha M, Korean J. Chem. Eng., 37, 151 (2020)
Ohmura R, Takeya S, Uchida T, Ebinuma T, Ind. Eng. Chem. Res., 43, 4964 (2004)
Youn Y, Cha M, Lee H, ChemPhysChem, 16, 2876 (2015)
Hong S, Moon S, Lee Y, Lee S, Park Y, Chem. Eng. J., 363, 99 (2019)
Cha M, Shin K, Lee H, J. Phys. Chem. B, 113, 10562 (2009)
Park KH, Shin K, Cha M, J. Phys. Chem. C, 123, 26777 (2019)
Kim E, Jin YK, Seo Y, Fluid Phase Equilib., 393, 85 (2015)
Ahn YH, Youn Y, Chaf M, Lee H, RSC Adv., 7, 12359 (2017)
Sung B, Shin K, Cha M, Choi S, Lee J, Seo Y, Lee H, J. Chem. Eng. Data, 55, 5906 (2010)
Park KH, Kim DH, Cha M, Chem. Phys. Lett., 779, 138869 (2021)
Blake D, Allamandola L, Sandford S, Hudgins D, Freund F, Science, 254, 548 (1991)
Williams KD, Devlin JP, J. Mol. Struct., 416, 277 (1997)
Koga K, Tanaka H, Nakanishi K, J. Chem. Phys., 101, 3127 (1994)
Notesco G, Bar-Nun A, Icarus, 148, 456 (2000)
Wallqvist A, J. Chem. Phys., 96, 5377 (1992)
Shin K, Udachin KA, Moudrakovski IL, Leek DM, Alavi S, Ratcliffe CI, Ripmeester JA, Proc. Natl. Acad. Sci. USA, 110, 8437 (2013)
Shin K, Moudrakovski IL, Davari MD, Alavi S, Ratcliffe CI, Ripmeester JA, Cryst. Eng. Comm., 16, 7209 (2014)
Shin K, Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Angew. Chem.-Int. Edit., 56, 6171 (2017)
Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D, High Pressure Research, 14, 235 (1996)
Shin JW, Eom K, Moon D, J. Synchrotron Radiat., 23, 369 (2016)
Rodriguez-Carvajal J, Physica B, 192, 55 (1993)
Takeya S, Udachin KA, Moudrakovski IL, Susilo R, Ripmeester JA, J. Am. Chem. Soc., 132, 524 (2010)
Takeya S, Fujihisa H, Yamawaki H, Gotoh Y, Ohmura R, Alavi S, Ripmeester JA, Angew. Chem.-Int. Edit., 55, 9287 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로