Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 10, 2021
Accepted January 27, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Experimental and numerical investigation of bubble nucleation and growth in supercritical CO2-blown poly(vinyl alcohol)
Department of Chemical Engineering, Faculty of Engineering, Azarbaijan Shahid Madani University, Postal Code 53751-71379, Tabriz, Iran 1Department of Mechanical Engineering, University of Bonab, P. O. Box 55517-61176, Bonab, Iran 2Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Istanbul Technical University, Istanbul, 34469, Turkey
h.azimi@azaruniv.ac.ir
Korean Journal of Chemical Engineering, August 2022, 39(8), 2252-2262(11), 10.1007/s11814-022-1078-3
Download PDF
Abstract
Bubble nucleation and growth was experimentally and numerically investigated in polyvinyl alcohol (PVA) while using supercritical carbon dioxide (scCO2) as a blowing agent. The solubility and diffusivity of CO2 in PVA were first evaluated using a magnetic suspension balance (MSB). Bubble nucleation and growth during foaming was then examined using a batch foaming setup equipped with a visualization system. It was observed that the increase in depressurization rate during the foaming increased the average bubble density. The average bubble size during the foaming was also evaluated through three different numerical models based on the integral method. Moreover, according to the bubble pressure profile, the PVA viscosity and CO2 diffusion control the bubble growth. According to the sensitivity analysis, the bubble growth seems to be more affected by the changes of thermodynamic parameters than the PVA rheological properties. Eventually, the average CO2 concentration and the critical free energy were numerically calculated using the classic nucleation theory.
References
Park CB, Baldwin DF, Suh NP, Prog. Polym. Sci, 35(5), 432 (1995)
Park CB, Suh NP, Prog. Polym. Sci, 36(1), 34 (1996)
Park CB, Cheung LK, Prog. Polym. Sci, 37(1), 1 (1997)
Nofar M, Park CB, Polylactide foams: Fundamentals, manufacturing, and applications, William Andrew (2017).
Li R, Lee JH, Wang C, Mark LH, Park CB, J. Supercrit. Fluids, 154, 104623 (2019)
Guo QP, Wang J, Park CB, Int. Polym. Process., 35(5), 503 (2020)
Nofar M, Tabatabaei A, Ameli A, Park CB, Polymer, 54(23), 6471 (2013)
Wong A, Mark LH, Hasan MM, Park CB, J. Supercrit. Fluids, 90, 35 (2014)
Nofar M, Park CB, Prog. Polym. Sci, 39(10), 1721 (2014)
Guo Q, Wang J, Park CB, Ohshima MA, Ind. Eng. Chem. Res., 45(18), 6153 (2006)
Azimi HR, Rezaei M, J. Chem. Thermodyn., 58, 279 (2013)
Batı B, Küçük EB, Durmuş A, Nofar M, J. Polym. Eng., 40(7), 561 (2020)
Leung SN, Wong A, Park CB, Guo Q, Ind. Eng. Chem. Res., 48(4), 1921 (2009)
Nofar M, Küçük EB, Batı B, J. Supercrit. Fluids, 153, 104590 (2019)
Nofar M, Batı B, Küçük EB, Jalali A, J. Supercrit. Fluids, 160, 104816 (2020)
Nistor A, Topiar M, Sovova H, Kosek J, J. Supercrit. Fluids, 130, 30 (2017)
Keshtkar M, Nofar M, Park CB, Carreau PJ, Polymer, 55(16), 4077 (2014)
Aloku GO, Yuan XF, Chem. Eng. Sci., 65(12), 3749 (2010)
Álvarez I, Gutiérrez C, Rodríguez JF, de Lucas A, García MT, J. Supercrit. Fluids, 164, 104886 (2020)
Leung SN, Park CB, Xu D, Li H, Fenton RG, Ind. Eng. Chem. Res., 45(23), 7823 (2006)
Leung SN, Wong A, Guo Q, Park CB, Zong JH, Chem. Eng. Sci., 64(23), 4899 (2009)
Wang C, Leung SN, Bussmann M, Zhai WT, Park CB, Ind. Eng. Chem. Res., 49(24), 12783 (2010)
Xu M, Lu J, Zhao J, Wei L, Liu T, Zhao L, Park CB, Polymer, 224, 123730 (2021)
Nofar M, Int. J. Mater. Sci. Res., 1, 16 (2018)
Park H, Park CB, Tzoganakis C, Chen P, Ind. Eng. Chem. Res., 46(11), 3849 (2007)
Nofar M, Mater. Des., 101, 24 (2016)
Arefmanesh A, Advani SG, Michaelides EE, Int. J. Heat Mass Transf., 35(7), 1711 (1992)
Ge Y, Liu T, Chem. Eng. Sci., 230, 116213 (2021)
Azimi H, Jahani D, Nofar M, J. Chem. Eng. Data, 65(9), 4596 (2020)
Gent AN, Tompkins DA, Int. J. Appl. Phys., 40(6), 2520 (1969)
Amon M, Denson CD, Prog. Polym. Sci, 26(3), 255 (1986)
Yoo HJ, Han CD, Prog. Polym. Sci, 21(2), 69 (1981)
Payvar P, Int. J. Heat Mass Transf., 30(4), 699 (1987)
Ramesh NS, Rasmussen DH, Campbell GA, Prog. Polym. Sci, 34(22), 1685 (1994)
Shafi MA, Flumerfelt RW, Chem. Eng. Sci., 52(4), 627 (1997)
Joshi K, Lee HG, Shafi MA, Flumerfelt RW, J. Appl. Polym. Sci., 67(8), 1353 (1998)
Shimoda M, Tsujimura I, Tanigaki M, Ohshima M, J. Cell. Plast., 37(6), 517 (2001)
Frank X, Dietrich N, Wu J, Barraud R, Li HZ, Chem. Eng. Sci., 62(24), 7090 (2007)
Ishikawa T, Ohshima M, Prog. Polym. Sci, 51(8), 1617 (2011)
Shukla S, Koelling KW, Ind. Eng. Chem. Res., 48(16), 7603 (2009)
Sun Y, Ueda Y, Suganaga H, Haruki M, Kihara SI, Takishima S, J. Supercrit. Fluids, 107, 733 (2016)
Riou M, Ausias G, Grohens Y, Gaudry T, Veillé JM, Férec J, Chem. Eng. Sci., 227, 115852 (2020)
Azimi H, J. Thermoplast. Compos. Mater., 08927057 (2020)
Park CB, Suh NP, Prog. Polym. Sci, 36(1), 34 (1996)
Park CB, Cheung LK, Prog. Polym. Sci, 37(1), 1 (1997)
Nofar M, Park CB, Polylactide foams: Fundamentals, manufacturing, and applications, William Andrew (2017).
Li R, Lee JH, Wang C, Mark LH, Park CB, J. Supercrit. Fluids, 154, 104623 (2019)
Guo QP, Wang J, Park CB, Int. Polym. Process., 35(5), 503 (2020)
Nofar M, Tabatabaei A, Ameli A, Park CB, Polymer, 54(23), 6471 (2013)
Wong A, Mark LH, Hasan MM, Park CB, J. Supercrit. Fluids, 90, 35 (2014)
Nofar M, Park CB, Prog. Polym. Sci, 39(10), 1721 (2014)
Guo Q, Wang J, Park CB, Ohshima MA, Ind. Eng. Chem. Res., 45(18), 6153 (2006)
Azimi HR, Rezaei M, J. Chem. Thermodyn., 58, 279 (2013)
Batı B, Küçük EB, Durmuş A, Nofar M, J. Polym. Eng., 40(7), 561 (2020)
Leung SN, Wong A, Park CB, Guo Q, Ind. Eng. Chem. Res., 48(4), 1921 (2009)
Nofar M, Küçük EB, Batı B, J. Supercrit. Fluids, 153, 104590 (2019)
Nofar M, Batı B, Küçük EB, Jalali A, J. Supercrit. Fluids, 160, 104816 (2020)
Nistor A, Topiar M, Sovova H, Kosek J, J. Supercrit. Fluids, 130, 30 (2017)
Keshtkar M, Nofar M, Park CB, Carreau PJ, Polymer, 55(16), 4077 (2014)
Aloku GO, Yuan XF, Chem. Eng. Sci., 65(12), 3749 (2010)
Álvarez I, Gutiérrez C, Rodríguez JF, de Lucas A, García MT, J. Supercrit. Fluids, 164, 104886 (2020)
Leung SN, Park CB, Xu D, Li H, Fenton RG, Ind. Eng. Chem. Res., 45(23), 7823 (2006)
Leung SN, Wong A, Guo Q, Park CB, Zong JH, Chem. Eng. Sci., 64(23), 4899 (2009)
Wang C, Leung SN, Bussmann M, Zhai WT, Park CB, Ind. Eng. Chem. Res., 49(24), 12783 (2010)
Xu M, Lu J, Zhao J, Wei L, Liu T, Zhao L, Park CB, Polymer, 224, 123730 (2021)
Nofar M, Int. J. Mater. Sci. Res., 1, 16 (2018)
Park H, Park CB, Tzoganakis C, Chen P, Ind. Eng. Chem. Res., 46(11), 3849 (2007)
Nofar M, Mater. Des., 101, 24 (2016)
Arefmanesh A, Advani SG, Michaelides EE, Int. J. Heat Mass Transf., 35(7), 1711 (1992)
Ge Y, Liu T, Chem. Eng. Sci., 230, 116213 (2021)
Azimi H, Jahani D, Nofar M, J. Chem. Eng. Data, 65(9), 4596 (2020)
Gent AN, Tompkins DA, Int. J. Appl. Phys., 40(6), 2520 (1969)
Amon M, Denson CD, Prog. Polym. Sci, 26(3), 255 (1986)
Yoo HJ, Han CD, Prog. Polym. Sci, 21(2), 69 (1981)
Payvar P, Int. J. Heat Mass Transf., 30(4), 699 (1987)
Ramesh NS, Rasmussen DH, Campbell GA, Prog. Polym. Sci, 34(22), 1685 (1994)
Shafi MA, Flumerfelt RW, Chem. Eng. Sci., 52(4), 627 (1997)
Joshi K, Lee HG, Shafi MA, Flumerfelt RW, J. Appl. Polym. Sci., 67(8), 1353 (1998)
Shimoda M, Tsujimura I, Tanigaki M, Ohshima M, J. Cell. Plast., 37(6), 517 (2001)
Frank X, Dietrich N, Wu J, Barraud R, Li HZ, Chem. Eng. Sci., 62(24), 7090 (2007)
Ishikawa T, Ohshima M, Prog. Polym. Sci, 51(8), 1617 (2011)
Shukla S, Koelling KW, Ind. Eng. Chem. Res., 48(16), 7603 (2009)
Sun Y, Ueda Y, Suganaga H, Haruki M, Kihara SI, Takishima S, J. Supercrit. Fluids, 107, 733 (2016)
Riou M, Ausias G, Grohens Y, Gaudry T, Veillé JM, Férec J, Chem. Eng. Sci., 227, 115852 (2020)
Azimi H, J. Thermoplast. Compos. Mater., 08927057 (2020)