ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 1, 2022
Accepted May 11, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A short review on hydrophobic pervaporative inorganic membranes for ethanol/water separation applications

1Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea 2Nuclear Research Institute for Future Technology and Policy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
Korean Journal of Chemical Engineering, September 2022, 39(9), 2263-2274(12), 10.1007/s11814-022-1173-5
downloadDownload PDF

Abstract

Inorganic based membranes are promising candidates for a variety of applications, including adsorption and separation due to their large surface area, high pore volume, tunable structure, and strong resistance against aggressive operation conditions, such as high temperature and pressure. Many research groups have investigated zeolite, micro- or mesoporous silica, and hybrid materials (organic and inorganic materials) as advanced membrane configurations in liquid separation applications. Especially, hydrophobic inorganic membranes have potential to separate ethanol from aqueous solution via pervaporation, ultimately producing ethanol, but several important challenges such as reliable synthesis, fabrication, or functionalization are yet to be solved. More specifically, a novel, high throughput process for the fabrication of continuous and defect-free hydrophobic inorganic membranes is required. Then, functionalization of pore structures of the membrane, if necessary, is desirable in order to tailor even more advanced hydrophobic properties for ethanol. Finally, the separation characteristics and performance of inorganic membranes must be further investigated to implement in the industry. Herein, the synthesis and normalized separation performance of diverse hydrophobic inorganic membranes with respect to selective layer material basis, such as zeolite, functionalized mesoporous silica, and mixed matrix, are comprehensively reviewed and the future direction is presented with a focus on ethanol recovery.

References

Sims REH, Mabee W, Saddler JN, Taylor M, Bioresour. Technol., 101, 1570 (2010)
FitzPatrick M, Champagne P, Cunningham MF, Whitney RA, Bioresour. Technol., 101, 8915 (2010)
Lin Y, Tanaka S, Appl. Microbiol. Biotechnol., 69, 627 (2006)
Demirbas A, Energy Conv. Manag., 49, 2106 (2008)
Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14, 578 (2010)
Kim S, Dale BE, Biomass Bioenerg., 26, 361 (2004)
Gupta A, Verma JP, Renew. Sust. Energ. Rev., 41, 550 (2015)
Cannilla C, Bonura G, Frusteri F, Catalysts, 7, 187 (2017)
Muhammad NIS, Rosentrater KA, Energies, 13, 436 (2020)
Kwiatkowski JR, McAloon AJ, Taylor F, Johnston DB, Ind. Crop. Prod., 23, 288 (2006)
Ueno K, Negishi H, Miyamoto M, Uemiya S, Oumi Y, Microporous Mesoporous Mater., 267, 1 (2018)
Vane LM, Alvarez FR, J. Chem. Technol. Biotechnol., 90, 1380 (2015)
Tripathi BP, Kumar M, Saxena A, Shahi VK, J. Colloid Interface Sci., 346, 54 (2010)
Chapman PD, Oliveira T, Livingston AG, Li K, J. Membr. Sci., 318, 5 (2008)
Zheng H, Yoshikawa M, J. Membr. Sci., 478, 148 (2015)
Tsai HA, Chen HC, Chou WL, Lee KR, Yang MC, Lai JY, J. Appl. Polym. Sci., 94, 1562 (2004)
Huang HJ, Ramaswamy S, Tschirner UW, Ramarao BV, Sep. Purif. Technol., 62, 1 (2008)
Peng P, Shi B, Lan Y, Sep. Sci. Technol., 46, 234 (2011)
Wei P, Cheng LH, Zhang L, Xu XH, Chen HL, Gao CJ, Renew. Sust. Energ. Rev., 30, 388 (2014)
Feng X, Huang RYM, Ind. Eng. Chem. Res., 36, 1048 (1997)
Saleem H, Zaidi SJ, Desalination, 475, 114171 (2020)
Goh PS, Ismail AF, Desalination, 434, 60 (2018)
Wee SL, Tye CT, Bhatia S, Sep. Purif. Technol., 63, 500 (2008)
Goh PS, Ismail AF, J. Chem. Technol. Biotechnol., 90, 971 (2015)
Katsoufidou K, Yiantsios SG, Karabelas AJ, J. Membr. Sci., 266, 40 (2005)
Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N, Desalination, 356, 226 (2015)
Lee KP, Arnot TC, Mattia D, J. Membr. Sci., 370, 1 (2011)
Chung TS, Zhang S, Wang KY, Su J, Ling MM, Desalination, 287, 78 (2012)
Luyben WL, Ind. Eng. Chem. Res., 48, 3484 (2009)
Baker RW, Membrane technology and applications, John Wiley & Sons, Ltd, UK (2004).
Mallada MMR, Inorganic membranes: synthesis, characterization and applications, Elsevier (2008).
Guo WF, Chung TS, Matsuura T, J. Membr. Sci., 245, 199 (2004)
Baker RW, Wijmans JG, Huang Y, J. Membr. Sci., 348, 346 (2010)
Bhat SD, Naidu BVK, Shanbhag GV, Halligudi SB, Sairam M, Aminabhavi TM, Sep. Purif. Technol., 49, 56 (2006)
Moliner M, Martínez C, Corma A, Chem. Mater., 26, 246 (2014)
Lai Z, Bonilla G, Diaz I, Nery JG, Sujaoti K, Amat MA, Kokkoli E, Terasaki O, Thompson RW, Tsapatsis M, Vlachos DG, Science, 300, 456 (2003)
Kita H, Horii K, Ohtoshi Y, Tanaka K, Okamoto KI, J. Mater. Sci. Lett., 14, 206 (1995)
Tan JC, Bennett TD, Cheetham AK, Proc. Natl. Acad. Sci. U.S.A., 107, 9938 (2010)
Rangnekar N, Mittal N, Elyassi B, Caro J, Tsapatsis M, Chem. Soc. Rev., 44, 7128 (2015)
Ersahin ME, Ozgun H, van Lier JB, Sep. Sci. Technol., 48, 2263 (2013)
Achiou B, Beqqour D, Elomari H, Bouazizi A, Ouammou M, Bouhria M, Aaddane A, Khiat K, Younssi SA, J. Environ. Chem. Eng., 6, 4429 (2018)
Mohammadi T, Pak A, Sep. Purif. Technol., 30, 241 (2003)
Liu W, Zhang J, Canfield N, Saraf L, Ind. Eng. Chem. Res., 50, 11677 (2011)
Vane LM, J. Chem. Technol. Biotechnol., 80, 603 (2005)
Kuhn J, Sutanto S, Gascon J, Gross J, Kapteijn F, J. Membr. Sci., 339, 261 (2009)
Kuhn J, Motegh M, Gross J, Kapteijn F, Microporous Mesoporous Mater., 120, 35 (2009)
Tuan VA, Li S, Falconer JL, Noble RD, J. Membr. Sci., 196, 111 (2002)
Nazir LSM, Yeong YF, Chew TL, J. Asian Ceram. Soc., 8, 553 (2020)
Xu X, Bao Y, Song C, Yang W, Liu J, Lin L, Microporous Mesoporous Mater., 75, 173 (2004)
Mohammadi T, Pak A, Microporous Mesoporous Mater., 56, 81 (2002)
Wong WC, Au LTY, Ariso CT, Yeung KL, J. Membr. Sci., 191, 143 (2001)
Tuan VA, Falconer JL, Noble RD, Ind. Eng. Chem. Res., 38, 3635 (1999)
Li S, Tuan VA, Noble RD, Falconer JL, Ind. Eng. Chem. Res., 40, 6165 (2001)
Sano T, Ejiri S, Yamada K, Kawakami Y, Yanagishita H, J. Membr. Sci., 123, 225 (1997)
Bowen TC, Kalipcilar H, Falconer JL, Noble RD, J. Membr. Sci., 215, 235 (2003)
Nomura M, Bin T, Nakao SI, Sep. Purif. Technol., 27, 59 (2002)
Lin X, Kita H, Okamoto KI, Ind. Eng. Chem. Res., 40, 4069 (2001)
Lin X, Chen X, Kita H, Okamoto K, AIChE J., 49, 237 (2003)
Chen H, Li Y, Yang W, J. Membr. Sci., 296, 122 (2007)
Robeson LM, J. Membr. Sci., 62, 165 (1991)
Robeson LM, J. Membr. Sci., 320, 390 (2008)
Lee HR, Shibata T, Kanezashi M, Mizumo T, Ohshita J, Tsuru T, J. Membr. Sci., 383, 152 (2011)
Araki S, Imasaka S, Tanaka S, Miyake Y, J. Membr. Sci., 380, 41 (2011)
Wang Z, Hao L, Yang F, Wei Q, Membranes, 10, 70 (2020)
Wei Q, Ding YL, Nie ZR, Liu XG, Li QY, J. Membr. Sci., 466, 114 (2014)
Koyano KA, Tatsumi T, Tanaka Y, Nakata S, J. Phys. Chem. B, 101, 9436 (1997)
Kujawski W, Roszak R, Sep. Sci. Technol., 37, 3559 (2002)
Kujawski W, Kujawa J, Wierzbowska E, Cerneaux S, Bryjak M, Kujawski J, J. Membr. Sci., 499, 442 (2016)
Park DH, Nishiyama N, Egashira Y, Ueyama K, Ind. Eng. Chem. Res., 40, 6105 (2001)
Kaneda M, Tsubakiyama T, Carlsson A, Sakamoto Y, Ohsuna T, Terasaki O, Joo SH, Ryoo R, J. Phys. Chem. B, 106, 1256 (2002)
Kim HJ, Jang KS, Galebach P, Gilbert C, Tompsett G, Conner WC, Jones CW, Nair S, J. Membr. Sci., 427, 293 (2013)
Kim HJ, Brunelli NA, Brown AJ, Jang KS, Kim WG, Rashidi F, Johnson JR, Koros WJ, Jones CW, Nair S, ACS Appl. Mater. Interfaces, 6, 17877 (2014)
Vinh-Thang H, Kaliaguine S, Chem. Rev., 113, 4980 (2013)
Ren H, Jin J, Hu J, Liu H, Ind. Eng. Chem. Res., 51, 10156 (2012)
Zulhairun AK, Ismail AF, J. Membr. Sci., 468, 20 (2014)
Xu S, Zhang H, Yu F, Zhao X, Wang Y, Sep. Purif. Technol., 206, 80 (2018)
Liu G, Xiangli F, Wei W, Liu S, Jin W, Chem. Eng. J., 174, 495 (2011)
Yi S, Su Y, Wan Y, J. Membr. Sci., 360, 341 (2010)
Naik PV, Kerkhofs S, Martens JA, Vankelecom IFJ, J. Membr. Sci., 502, 48 (2016)
Li Q, Cheng L, Shen J, Shi J, Chen G, Zhao J, Duan J, Liu G, Sep. Purif. Technol., 178, 105 (2017)
Amrei SS, Asghari M, Esfahanian M, Zahraei Z, J. Chem. Technol. Biotechnol., 95, 1604 (2020)
Çalhan A, Deniz S, Romero J, Hasanoğlu A, Korean J. Chem. Eng., 36, 1489 (2019)
Mizsey P, Selim A, Toth AJ, Fozer D, Süvegh K, ACS Omega, 5, 32373 (2020)
Kulkarni AS, Sajjan AM, Ashwini M, Banapurmath NR, Ayachit NH, Shirnalli GG, RSC Adv., 10, 22645 (2020)
Grzybek P, Jakubski L, Borys P, Kołodziej S, Ślusarczyk C, Turczyn R, Dudek G, Sep. Purif. Technol., 281, 119897 (2022)
Dudek G, Turczyn R, Djurado D, Materials, 13, 4152 (2020)
Pan F, Cao C, Liu G, Jiang Z, Chem. Eng. Sci. X, 11, 100102 (2021)
Castro-Muñoz R, Boczkaj G, Molecules, 26, 1242 (2021)
Hasegawa Y, Abe C, Ikeda A, Membranes, 11, 229 (2021)
Li L, Lu Y, Li L, Yang J, Fu W, Luo Y, Lu J, Zhang Y, Zhou L, J. Membr. Sci., 638, 119701 (2021)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로