ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 1, 2022
Accepted April 10, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Optimal strategies for supercritical gas antisolvent (GAS) coprecipitation of pyrazinamide/PVP particles via response surface methodology

1Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 2Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran 3Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
nowee@ferdowsi.um.ac.ir
Korean Journal of Chemical Engineering, September 2022, 39(9), 2307-2317(11), 10.1007/s11814-022-1142-z
downloadDownload PDF

Abstract

This paper concerns optimization and experimental validation of coprecipitation process parameters for preparing particles of Pyrazinamide and Polyvinylpyrrolidone using gas anti-solvent supercritical method. Mixtures of organic solvents (acetone and ethanol) were selected with various combinations of the drug and the polymer. The central composite design (CCD) was adopted to explore the effect of temperature, pressure, antisolvent addition rate, polymer fraction, and ethanol fraction on particle size distribution (PSD) and solubility. The strong likelihood models were developed for all the responses using Design-Expert software. Polymer fraction was the most important (p<0.0001) factor influencing PSD, while pressure and interaction between temperature and polymer fraction significantly affected solubility. The optimal condition was specified at temperature of 50 ℃, pressure of 120 bar, antisolvent rate of 16 bar/min, polymer fraction of 30%, and ethanol fraction of 50%. The model was then validated experimentally under the optimal condition and compared with pure PZA and particles obtained from the physical mixture. According to DLS, XRD, FTIR, and FESEM analyses, the crystallinity of PZA-PVP particles was reduced in optimum conditions, leading to higher solubility. Also, the results suggest that it is feasible to produce coprecipitated particles with narrower size distribution by optimized GAS process.

References

Silva A, Vieira B, Carmo F, Amaral L, Silva L, Escudini C, Lopes M, Sousa V, Castro H, Veiga F, Rodrigues C, Ribeiro A, British J. Pharm. Res., 4, 1781 (2014)
Maher D, Chaulet P, Spinaci S, Harries A, Treatment of tuberculosis: guidelines for national programmes, Second edition, 2 ed., World Health Organization, Geneva (1997).
Varma R, Kumar TS, Prasanthi B, Ratna JV, Indian J. Pharm. Sci., 77, 258 (2015)
Baaklini G, Dupray V, Coquerel G, Int. J. Pharm., 479, 163 (2015)
Kestur US, Taylor LS, CrystEngComm, 12, 2390 (2010)
Hancock BC, Parks M, Pharm. Res., 17, 397 (2000)
Prosapio V, De Marco I, Reverchon E, Chem. Eng. J., 292, 264 (2016)
Padrela L, Zeglinski J, Ryan KM, Cryst. Growth Des., 17, 4544 (2017)
Prosapio V, De Marco I, Reverchon E, J. Supercrit. Fluids, 138, 247 (2018)
Moribe K, Tozuka Y, Yamamoto K, Adv. Drug Deliv. Rev., 60, 328 (2008)
Pasquali I, Bettini R, Giordano F, Adv. Drug Deliv. Rev., 60, 399 (2008)
Dehghani F, Foster NR, Curr. opin. Solid State Mat. Sci., 7, 363 (2003)
Amani M, Ardestani NS, Majd NY, J. CO2 Utilization, 46, 101465 (2021)
Garay I, Pocheville A, Madariaga L, Powder Technol., 197, 211 (2010)
Varona S, Fernández J, Rossmann M, Braeuer A, J. Chem. Eng. Data, 58, 1054 (2013)
Montes A, Gordillo MD, Pereyra C, de la Ossa EJM, J. Supercrit. Fluids, 60, 75 (2011)
De Marco I, Rossmann M, Prosapio V, Reverchon E, Braeuer A, Chem. Eng. J., 273, 344 (2015)
Foster N, Mammucari R, Dehghani F, Barrett A, Bezanehtak K, Coen E, Combes G, Meure L, Ng A, Regtop HL, Tandya A, Ind. Eng. Chem. Res., 42, 6476 (2003)
Gokhale A, Khusid B, Dave RN, Pfeffer R, J. Supercrit. Fluids, 43, 341 (2007)
Franco P, Reverchon E, De Marco I, Powder Technol., 340, 1 (2018)
Homayouni A, Sadeghi F, Varshosaz J, Garekani HA, Nokhodchi A, Eur. J. Pharm. Biopharm., 88, 261 (2014)
Ozkan G, Franco P, Capanoglu E, De Marco I, Chem. Eng. Process., 146, 107689 (2019)
Uzun IN, Sipahigil O, Dinçer S, J. Supercrit. Fluids, 55, 1059 (2011)
Fusaro F, Mazzotti M, Muhrer G, Cryst. Growth Des., 4, 881 (2004)
Esfandiari N, Ghoreishi SM, J. Supercrit. Fluids, 84, 205 (2013)
Ober CA, Montgomery SE, Gupta RB, Powder Technol., 236, 122 (2013)
Jafari D, Yarnezhad I, Nowee SM, Baghban SHN, Ind. Eng. Chem. Res., 54, 3685 (2015)
Shirafkan A, Nowee SM, Kamali H, J. Supercrit. Fluids, 178, 105386 (2021)
Ngilirabanga JB, Aucamp M, Rosa PP, Samsodien H, Front. Chem., 8, 1051 (2020)
Medarević D, Djuriš J, Ibrić S, Mitrić M, Kachrimanis K, Int. J. Pharm., 540, 150 (2018)
Zhang Z, Li Q, Guo B, Zhang S, Zhang S, Hu D, Sci. Rep., 10, 11187 (2020)
Campardelli R, Reverchon E, De Marco I, J. Supercrit. Fluids, 143, 321 (2019)
Prosapio V, Reverchon E, De Marco I, J. CO2 Utilization, 19, 230 (2017)
Chhouk K, Wahyudiono, Kanda H, Kawasaki SI, Goto M, Front. Chem. Sci. Eng., 12, 184 (2018)
Gun WJ, Routh AF, Langmuir, 29, 12541 (2013)
Cherukuvada S, Thakuria R, Nangia A, Cryst. Growth Des., 10, 3931 (2010)
Barrett AM, Dehghani F, Foster NR, Pharm. Res., 25, 1274 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로