ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 30, 2021
Accepted February 18, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of air gap interval on polyvinylidene fluoride hollow fiber membrane spinning for CO2 and CH4 gas separation

1Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia 2CO2 Research Centre (CO2RES), Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia 3Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology Lahore (New-Campus), Pakistan
Korean Journal of Chemical Engineering, September 2022, 39(9), 2499-2504(6), 10.1007/s11814-022-1087-2
downloadDownload PDF

Abstract

Improper control of air gap interval during hollow fiber membranes (HFMs) spinning may lead to structural defects such as inner lumen deformations and macrovoids. In the current work, PVDF HFMs were prepared by manipulating air gap intervals at 5, 10, 15, 20, and 25 cm, using dry-wet spinning mechanism. The changes in its properties, including contact angle, mechanical strength, and most importantly the morphological structure that is usually crucial for gas separation performance have been determined. The morphology was evaluated using SEM, and the inner lumen defects of HFMs were reduced with the increment of air gap interval during the spinning process. Subsequently,_x000D_ the CO2 gas permeance was observed to increase from 5 to 15 cm air gap distance and almost constant at 20 cm air gap interval, then increase tremendously beyond this point. Furthermore, CO2/CH4 ideal selectivity was observed to be improved and reached the highest end at PVDF-AG15 and dropped beyond this point. Therefore, varying air gap distance is considered as a practical approach for better gas separation. However, macrovoids will form if the air gap length is overlong. Thus, optimum air gap length during PVDF HFMs spinning is vital for morphology and gas separation performance.

References

Awad A, Aljundi IH, Korean J. Chem. Eng., 35, 1700 (2018)
Mubashir M, Yeong YF, Chew TL, Lau KK, Sep. Purif. Technol., 215, 32 (2019)
Ma L, Svec F, Tan T, Lv Y, ACS Appl. Nano Mater., 1, 2808 (2018)
Meng L, Zou X, Guo S, Ma H, Zhao Y, Zhu G, ACS Appl. Mater. Interfaces, 7, 15561 (2015)
Mubashir M, Fong YY, Leng CT, Keong LK, Chem. Eng. Technol., 41, 235 (2018)
Qiao Z, Xu Q, Jiang J, J. Membr. Sci., 551, 47 (2018)
Jamil A, Ching OP, Iqbal T, Rafiq S, Zia-Ul-Haq M, Shahid MZ, Mubashir M, Manickam S, Show PL, J. Hazard. Mater., 41, 126000 (2021)
Shahid S, Baron GV, Denayer JFM, Martens JA, Wee LH, Vankelecom IFJ, J. Membr. Sci., 620, 118943 (2021)
Shakoor A, Khan AL, Akhter P, Aslam M, Bilad MR, Maafa IM, Moustakas K, Nizami AS, Hussain M, Environ. Sci. Pollut. Res., 28, 12397 (2021)
Chen X, Asian Philos, 27, 1 (2017)
Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K, J. Appl. Polym. Sci., 135, 45765 (2018)
Pang H, Gong H, Du M, Shen Q, Chen Z, Sep. Purif. Technol., 191, 38 (2018)
Tang Y, Lin Y, Lin H, Li C, Zhou B, Wang X, Membranes, 10, 1 (2020)
Li W, Prog. Mater. Sci., 100, 21 (2019)
Peng N, Widjojo N, Sukitpaneenit P, Teoh MM, Lipscomb GG, Chung TS, Lai JY, Prog. Polym. Sci, 37, 1401 (2012)
Shi L, Wang R, Cao Y, Feng C, Liang DT, Tay JH, J. Membr. Sci., 305, 215 (2007)
Li W, Su P, Zhang G, Shen C, Meng Q, J. Membr. Sci., 495, 384 (2015)
Bonyadi S, Chung TS, Krantz WB, J. Membr. Sci., 299, 200 (2007)
Zhang X, Wen Y, Yang Y, Liu L, J. Macromol. Sci. B, 47, 1039 (2008)
Ahmad AL, Shafie ZMHM, J. Phys. Sci., 28, 185 (2017)
Mubashir M, Yeong YF, Lau KK, Chew TL, Polym. Test, 73, 1 (2019)
Pak SH, Jeon YW, Shin MS, Koh HC, Environ. Eng. Sci., 33, 17 (2016)
Hosseini SS, Peng N, Chung TS, J. Membr. Sci., 349, 156 (2010)
Huang A, Feng B, J. Membr. Sci., 548, 59 (2018)
You YW, Xiao CF, Huang QI, Huang Y, Wang C, Liu HI, RSC Adv., 8, 102 (2018)
Zhu H, Jie X, Wang L, Kang G, Liu D, Cao Y, RSC Adv., 6, 69124 (2016)
Loh CH, Wang R, J. Membr. Sci., 466, 130 (2014)
Rahbari-Sisakht M, Ismail AF, Rana D, Matsuura T, J. Membr. Sci., 415, 221 (2012)
Wang Z, Ma J, Desalination, 286, 69 (2012)
Korminouri F, Rahbari-Sisakht M, Rana D, Matsuura T, Ismail AF, Sep. Purif. Technol., 132, 601 (2014)
Anuar E, Saufi SM, Yussof HW, Korean J. Chem. Eng., 36, 1124 (2019)
Korminouri F, Rahbari-Sisakht M, Matsuura T, Ismail AF, Chem. Eng. J., 264, 453 (2015)
Rosid SM, Hasbullah H, Raharjo Y, Ismail AF, Othman MHD, Kadir SHSA, Kamal F, Abdullah MS, Ng BC, Mater. Today: Proc., 46, 1929 (2021)
Zhao YH, Zhu BK, Ma XT, Xu YY, J. Membr. Sci., 290, 222 (2007)
Huang FL, Wang QQ, Wei QF, Gao WD, Shou HY, Jiang SD, Express. Polym. Lett., 4, 551 (2010)
Chan M, Ng S, AIP Conf. Proc., 2016, 20035 (2018)
Zakria HS, Othman MHD, Kamaludin R, Jilani A, IOP Conf. Ser.: Mater. Sci. Eng., 1142, 12014 (2021)
Tsai HA, Huang DH, Fan SC, Wang YC, Li CL, Lee KR, Lai JY, J. Membr. Sci., 198, 245 (2002)
Khayet M, Chem. Eng. Sci., 58, 3091 (2003)
Abed MRM, Kumbharkar SC, Groth AM, Li K, J. Membr. Sci., 407, 145 (2012)
Maity B, Kanasan RKRAL, Rahman SA, Mater. Today: Proc., 41, 136 (2021)
Kamble AR, Patel CM, Murthy ZVP, Sep. Sci. Technol., 54, 311 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로