ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 15, 2022
Accepted May 26, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Application of water scrubbing technique for biogas upgrading in a microchannel

Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran 1CORIA-CNRS (UMR 6614), Normandie University, INSA of Rouen, 76000 Rouen, France
b.aghel@kut.ac.ir
Korean Journal of Chemical Engineering, January 2023, 40(1), 145-154(10), 10.1007/s11814-022-1188-y
downloadDownload PDF

Abstract

Biogas, produced as a result of anaerobic degradation of organic matter, is an alternative source of renewable energy and a sustainable and cost-effective fuel due to its high availability. However, before it can be used as an energy source, biogas must be upgraded by removing impurities such as CO2 and H2S to increase its calorific value. In this study, CO2 was removed and synthetic biogas was upgraded at atmospheric pressure in a microchannel using three absorbents of well water, seawater, and drinking water. The effects of operating variables, including absorbent flow rate, biogas flow rate, and system temperature, were investigated. As a function of independent variables, RSM analysis proposed a quadratic model for the absorption process by each absorbent to predict the response (CO2 removal efficiency). Moreover, the experimental values obtained for CO2 absorption were found to satisfactorily match the model values (R2=0.9991-0.9997). The maximum CO2 absorption in well water, seawater, and drinking water at 30 ℃, liquid flow rate of 150ml·h-1, and gas flow rate of 50ml·min-1 was 90.22, 84.95, and 79.66, respectively.

References

Morgan Jr HM, Xie W, Liang J, Mao H, Lei H, Ruan R, Bu Q, Bioresour. Technol., 250, 910 (2018)
Li D, Kim M, Kim H, Choi O, Sang BI, Chiang PC, Kim H, Korean J. Chem. Eng., 35(1), 179 (2018)
Noorain R, Kindaichi T, Ozaki N, Aoi Y, Ohashi A, J. Clean Prod., 214, 103 (2019)
Abdeen FR, Mel M, Jami MS, Ihsan SI, Ismail AF, Chin. J. Chem. Eng., 24(6), 693 (2016)
Zhao Q, Leonhardt E, MacConnell C, Frear C, Chen S, Compressed Biomethane, CSANR, Ed, 24 (2010).
Aghel B, Behaein S, Wongwises S, Shadloo MS, Biomass Bioenerg., 160, 106422 (2022)
Awe OW, Zhao Y, Nzihou A, Minh DP, Lyczko N, Waste Biomass Valorization, 8(2), 267 (2017)
Aghel B, Maleki M, Sahraie S, Heidaryan E, Fuel, 306, 121636 (2021)
van Vu P, Nguyen VC, Kim J, Korean J. Chem. Eng., 38(8), 1676 (2021)
Jin F, Xu H, Hua D, Chen L, Li Y, Zhao Y, Zuo B, Korean J. Chem. Eng., 38(1), 129 (2021)
Chen G, Wang F, Wang S, Ji C, Wang W, Dong J, Gao F, Korean J. Chem. Eng., 38(1), 46 (2021)
Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG, Biotechnol. Adv., 36(2), 452 (2018)
Aghel B, Sahraie S, Heidaryan E, Energy, 117618 (2020)
Aghel B, Sahraie S, Heidaryan E, Varmira K, Process Saf. Environ. Protect., 131, 152 (2019)
Cozma P, Ghinea C, Mamaliga I, Wukovits W, Friedl A, Gavrilescu M, Clean - Soil, Air, Water, 41(9), 917 (2013)
Kapoor R, Subbarao PMV, Vijay VK, Shah G, Sahota S, Singh D, Verma M, Appl. Energy, 208, 1379 (2017)
Deublein D, Steinhauser A, Biogas from waste and renewable resources, John Wiley & Sons, Weinheim, Germany (2008).
Xiao Y, Yuan H, Pang Y, Chen S, Zhu B, Zou D, Ma J, Yu L, Li X, Chin. J. Chem. Eng., 22(8), 950 (2014)
Ghaib K, Ben-Fares FZ, Renew. Sust. Energ. Rev., 81, 433 (2018)
Benizri D, Dietrich N, Labeyrie P, Hébrard G, Sep. Purif. Technol., 219, 169 (2019)
Budzianowski WM, Wylock CE, Marciniak PA, Energy Conv. Manag., 141, 2 (2017)
Geng H, Chen Q, Zhao G, The Experiment Study of Biogas Atomization Upgrading with Water Scrubbing at Atmospheric Pressure, (2015).
Walozi R, Nabuuma B, Sebiti A, Univers. J. Agric. Res., 4, 60 (2016)
Tamhankar Y, King B, Whiteley J, Cai T, McCarley K, Resetarits M, Aichele C, Chem. Eng. Res. Des., 104, 376 (2015)
Salimi H, Hashemipour N, Karimi-Sabet J, Amini Y, Chem. Prod. Process Model. (2021).
Aghel B, Heidaryan E, Sahraie S, Mir S, J. Clean Prod., 231, 723 (2019)
Abdollahi P, Karimi-Sabet J, Moosavian MA, Amini Y, Sep. Purif. Technol., 231, 115875 (2020)
Jahromi PF, Karimi-Sabet J, Amini Y, Fadaei H, Chem. Eng. J., 328, 1075 (2017)
Jahromi PF, Karimi-Sabet J, Amini Y, Chem. Eng. J., 334, 2603 (2018)
Akkarawatkhoosith N, Kaewchada A, Jaree A, J. Taiwan Inst. Chem. Eng., 98, 113 (2019)
Zhu C, Li C, Gao X, Ma Y, Liu D, Int. J. Heat Mass Transf., 73, 492 (2014)
Dastbaz A, Karimi-Sabet J, Ahadi H, Amini Y, Desalination, 424, 62 (2017)
Li H, Tang Z, Xing X, Guo D, Cui L, Mao XZ, Energy, 164, 1135 (2018)
Li Y, Tsui T, J. Geophys. Res., 76, 4203 (1971)
Li C, Zhu C, Ma Y, Liu D, Gao X, Int. J. Heat Mass Transf., 78, 1055 (2014)
Asfaram A, Ghaedi M, Azqhandi MHA, Goudarzi A, Dastkhoon M, RSC Adv., 6, 40502 (2016)
Xiao Y, Yuan H, Pang Y, Chen S, Zhu B, Zou D, Ma J, Yu L, Li X, Chin. J. Chem. Eng., 22(8), 950 (2014)
Pirola C, Galli F, Bianchi CL, Manenti F, Technology, 3, 99 (2015)
Aghel B, Gouran A, Behaein S, Chem. Eng. Process., 175, 108927 (2022)
Rajivgandhi MMC, Singaravelu M, Environ. Biotechnol., 7(3), 639 (2014)
Kohl AL, Nielsen R, Gas purification, Elsevier (1997)
Läntelä J, Rasi S, Lehtinen J, Rintala J, Appl. Energy, 92, 307 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로