ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 30, 2022
Accepted August 2, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Kinetic and thermodynamic evaluation of pyrolysis of jeans waste via coats-redfern method

1School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Malaysia 2Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates 3Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, 5825 Doha, Qatar 4Institute of Energy and Environmental Engineering, University of the Punjab, Q&A Campus, Lahore, Pakistan 5SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeong Gi-do 16419, Korea 6School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeong Gi-do 16419, Korea
hassanzeb.ieee@pu.edu.pk
Korean Journal of Chemical Engineering, January 2023, 40(1), 155-161(7), 10.1007/s11814-022-1248-3
downloadDownload PDF

Abstract

Used textiles, such as jeans wastes, exhibit a high potential for generating renewable and sustainable energy. However, limited research has been devoted toward investigating the kinetic and thermodynamic parameters of textile wastes during pyrolysis and applying these wastes as feedstock for fuels such as biogas. Therefore, this study investigated the kinetic and thermodynamic aspects of the thermal decomposition of jeans waste to evaluate its potential for sustainable energy production. Jeans waste was heat treated at 50-850 ℃ under different heating rates of 10-40 ℃ min-1. Active pyrolysis for the decomposition of jeans waste occurred at temperatures ranging from 250 to 550 ℃. Specific Coats-Redfern-type reaction mechanisms were applied to determine the kinetic and thermodynamic variables in the active temperature zone. The thermodynamic parameters (ΔH and ΔG) and activation energies increased when the heating rate was increased from 10 to 30 ℃ min-1. When the heating rate was further increased to 40 ℃ min-1, ΔH, ΔG, and the activation energies decreased. For heating rates of 10, 20, 30, and 40 ℃ min-1, the pre-exponential factors varied in the ranges of 7.4×103 to 1.4×104, 1.8×104 to 5.1×1010, 2.8×104 to 5.3×1010, and 3.6×104 to 3.1×1010 min-1, respectively. In each reaction mechanism model, the entropy changed negatively for all the heating rates examined in this study. This work and its results could serve as a guide for implementing such pyrolysis processes for textile wastes at a practical scale for bioenergy applications.

References

Brones FA, Carvalho MM, Zancul ES, J. Clean Prod., 142, 8 (2017)
Rezk H, Nassef AM, Inayat A, Sayed ET, Shahbaz M, Olabi AG, Sci. Total Environ., 658, 1150 (2019)
Sarkodie SA, Strezov V, Sci. Total Environ., 639, 888 (2018)
Nazar M, Yasar A, Raza SA, Ahmad A, Rasheed R, Shahbaz M, Tabinda AB, Biomass Convers. Biorefin., 11, 1 (2021)
Ha JM, Hwang KR, Kim YM, Jae J, Kim KH, Lee HW, Kim JY, Park YK, Renew. Sust. Energ. Rev., 111, 422 (2019)
Oh S, Lee J, Lam SS, Kwon EE, Ha JM, Tsang DCW, Ok YS, Chen WH, Park YK, Bioresour. Technol., 342, 126067 (2021)
Shahbaz M, AlNouss A, Parthasarathy P, Abdelaal AH, Mackey H, McKay G, Al-Ansari T, Biomass Convers. Biorefin., 12, 669 (2020)
Polat S, Sayan P, Energy Sources Part A-Recovery Util. Environ. Eff., 42, 1 (2020)
Kim JY, Lee HW, Lee SM, Jae J, Park YK, Bioresour. Technol., 279, 373 (2019)
Lee J, Kwon EE, Lam SS, Chen WH, Rinklebe J, Park YK, J. Clean Prod., 321, 128989 (2021)
Park C, Lee J, Int. J. Energy Res., 45, 13088 (2021)
Nunes LJR, Godina R, Matias JCO, Catalão JPS, J. Clean Prod., 171, 1353 (2018)
del Mar Barbero-Barrera M, Pombo O, de los Angeles Navacerrada M, Compos. B. Eng., 94, 26 (2016)
Paul R, Denim, Woodhead Publishing, United Kingdom (2015).
Meng X, Fan W, Ma Y, Wei T, Dou H, Yang X, Tian H, Yu Y, Zhang T, Gao L, Text. Res. J., 90, 695 (2020)
Peña-Pichardo P, Martínez-Barrera G, Martínez-López M, Ureña-Núñez F, dos Reis ML, Constr. Build. Mater., 177, 409 (2018)
Dahlbo H, Aalto K, Eskelinen H, Salmenperä H, Sustain. Prod. Consum., 9, 44 (2017)
Wen C, Wu Y, Chen X, Jiang G, Liu D, J. Therm. Anal. Calorim., 128, 581 (2017)
Hanoğlu A, Çay A, Yanık J, Energy J., 166, 664 (2019)
Chen X, Chen Y, Yang H, Chen W, Wang X, Chen H, Bioresour. Technol., 233, 15 (2017)
Seo MW, Lee SH, Nam H, Lee D, Tokmurzin D, Wang S, Park YK, Bioresour. Technol., 343, 126109 (2022)
Jung S, Shetti NP, Reddy KR, Nadagouda MN, Park YK, Aminabhavi TM, Kwon EE, Energy Conv. Manag., 236, 114038 (2021)
Trinh QT, Banerjee A, Ansari KB, Dao DQ, Drif A, Binh NT, Targeting green fuels and platform chemicals, Springer, Singapore (2020).
Naqvi SR, Tariq R, Hameed Z, Ali I, Taqvi SA, Naqvi M, Niazi MBK, Noor T, Farooq W, Fuel, 233, 529 (2018)
Yousef S, Tatariants M, Tichonovas M, Sarwar Z, Jonuškienė I, Kliucininkas L, Resour. Conserv. Recycl., 145, 359 (2019)
Lee J, Kwon EE, Park YK, Catal. Today, 355, 263 (2020)
Kim YM, Jae J, Kim BS, Hong Y, Jung SC, Park YK, Energy Conv. Manag., 149, 966 (2017)
Valizadeh S, Lam SS, Ko CH, Lee SH, Farooq A, Yu YJ, Jeon JK, Jung SC, Rhee GH, Park YK, Bioresour. Technol., 320, 124313 (2021)
Valizadeh S, Jang SH, Rhee GH, Lee J, Show PL, Khan MA, Jeon BH, Lin KYA, Ko CH, Chen WH, Chem. Eng. J., 433, 133793 (2022)
Zeng D, Wang S, Peng J, Gui Y, Liu H, Yang F, Li M, ChemistrySelect, 4, 7649 (2019)
Yousef S, Eimontas J, Striūgas N, Tatariants M, Abdelnaby MA, Tuckute S, Kliucininkas L, Energy Conv. Manag., 196, 688 (2019)
Naqvi SR, Tariq R, Hameed Z, Ali I, Naqvi M, Chen WH, Ceylan S, Rashid H, Ahmad J, Taqvi SA, Renew. Energy, 131, 854 (2019)
Mishra G, Kumar J, Bhaskar T, Bioresour. Technol., 182, 282 (2015)
Naqvi SR, Hameed Z, Tariq R, Taqvi SA, Ali I, Niazi MBK, Noor T, Hussain A, Iqbal N, Shahbaz M, Waste Manage., 85, 131 (2019)
Motghare KA, Rathod AP, Wasewar KL, Labhsetwar NK, Waste Manage., 47, 40 (2016)
Yoon D, Chung KY, Chang W, Kim SM, Lee MJ, Lee Z, Kim J, Chem. Mater., 27, 266 (2015)
Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I, Chem. Mater., 18, 2740 (2006)
Islam A, Molla Y, Dey TK, Jamal M, Rathanasamy R, Uddin M, J. Polym. Res., 28, 1 (2021)
Zhao D, Chen K, Yang F, Feng G, Sun Y, Dai Y, Cellulose, 20, 3205 (2013)
Yousef S, Tatariants M, Tichonovas M, Kliucininkas L, Lukošiūtė SI, Yan L, J. Clean Prod., 254, 120078 (2020)
Akyürek Z, Sustainability, 11, 2280 (2019)
Skreiberg A, Skreiberg O, Sandquist J, Sørum L, Fuel, 90, 2182 (2011)
Yang X, Zhao Y, Li R, Wu Y, Yang M, Thermochim. Acta, 665, 20 (2018)
Chen WH, Eng CF, Lin YY, Bach QV, Energy Conv. Manag., 221, 113165 (2020)
Zaker A, Chen Z, Zaheer-Uddin M, Guo J, J. Environ. Chem. Eng., 9, 104554 (2021)
Xia G, Han W, Xu Z, Zhang J, Kong F, Zhang J, Zhang X, Jia F, J. Environ. Chem. Eng., 9, 106182 (2021)
Balasundram V, Ibrahim N, Kasmani RM, Hamid MKA, Isha R, Hasbullah H, Ali RR, J. Clean Prod., 167, 218 (2017)
Yuan X, He T, Cao H, Yuan Q, Renew. Energy, 107, 489 (2017)
Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT, Express Polym. Lett., 2, 133 (2008)
Loy ACM, Gan DKW, Yusup S, Chin BLF, Lam MK, Shahbaz M, Unrean P, Acda MN, Rianawati E, Bioresour. Technol., 261, 213 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로