ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 4, 2022
Accepted June 19, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Species resolved interaction mechanism between graphene oxide and Cu(II) in aqueous solution with implications on wastewater remediation

College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, P. R. China 1College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, P. R. China 2Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou 014010, P. R. China 3School of Materials and Metallurgy, Chongqing University of Science and Technology, Chongqing 401331, P. R. China 4Inner Mongolia Jincai Mining Company Limited, Hohhot 010010, P. R. China
quan820720@126.com
Korean Journal of Chemical Engineering, January 2023, 40(1), 162-174(13), 10.1007/s11814-022-1211-3
downloadDownload PDF

Abstract

Heavy metals discharged into water by industrial activity give rise to severe environmental pollution. Herein, graphene oxide (GO) was prepared based on an improved Hummers method and utilized as adsorbent to remove aqueous Cu(II). The “species resolved” adsorption mechanism was deeply inspected via combining multiple explorations extracted from Cu(II) species distribution, GO surface charge, adsorption experiment and fitting, hardsoft acid-base (HSAB) theory, FTIR and XPS spectra. Different adsorption mechanism resolved by Cu(II) species was proposed, corresponding to different pH range. (1) When pH<8, bare Cu2+ is the dominant Cu(II) species, ion exchange and chemical complexation are the adsorption mechanism. (2) When pH=8, Cu(OH)2 is the dominant Cu(II) species, precipitation, ion exchange and chemical complexation are the adsorption mechanism. (3) When pH>8, Cu(OH)3- is the dominant Cu(II) species, electrostatic attraction is the adsorption mechanism. Electron transfer and energy lowering calculated based on the HSAB theory demonstrates, OH is stronger than COOH regarding binding affinity towards Cu(II). As for adsorption efficiency, adsorption of Cu(II) onto GO equilibrated in 12min, with adsorption percent and quantity 92.32% and 553.90mg·g-1, respectively. Findings of this work may shed light on the interaction mechanism of graphene oxide with heavy metals. Accordingly, these as clarified mechanisms may provide guidance for developing efficient adsorbent based on graphene for heavy metal scavenging.

References

Verma M, Lee I, Oh J, Kumar V, Kim H, Chemosphere, 287, 132385 (2022)
Goyal P, Tiwary CS, Misra SK, J. Environ. Manage., 277, 111469 (2021)
Zeng WZ, Guo WX, Li B, Wei ZS, Dionysiou DD, Xiao RY, J. Hazard. Mater., 408, 124868 (2021)
Cstro-Munoz R, Gonzalez-Melgoza LL, Garcia-Depraect O, Chemosphere, 270, 129421 (2021)
Liu D, Yuan Y, Wei YQ, Zhang H, Si YX, Zhang F, J. Eviron. Sci., 116, 4351 (2022)
Gomravi Y, Karimi A, Azimi H, Korean J. Chem. Eng., 38, 1843 (2021)
Sherugar P, Padaki M, Naik NS, George SD, Murthy DHK, Chemosphere, 287, 132085 (2022)
Zhang TT, Wang W, Zhao YL, Bai HY, Wen T, Kang SC, Song GS, Song SX, Komarneni S, Chem. Eng. J., 420, 127574 (2021)
Gao WY, Razanajatovo MR, Song Y, Zhao X, Zhao ZY, Peng QM, Jiao TF, Liu XJ, Zhang QR, Chem. Eng. J., 429, 132599 (2022)
Jia XZ, Peydayesh M, Huang Q, Mezzenga R, Small, 184, 2105502 (2022)
Zhou W, Wu PT, Zhang L, Zhu DL, Zhao XN, Cai YH, J. Hazard. Mater., 421, 126721 (2022)
Yan J, Li R, Sci. Total Environ., 813, 152604 (2022)
Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Yu HT, Zhang BW, Bulin CK, Li RH, Xing RG, Sci. Rep., 6, 36143 (2016)
Bulin CK, Zhang BW, Guo T, Ma ZY, Li B, Zhang YH, Xing RG, Ge X, Res. Chem. Intermediate, 47, 3825 (2021)
Guo T, Bulin CK, J. Phys. Chem., 158, 110251 (2021)
Pearson RG, J. Am. Chem. Soc., 84, 16 (1962)
Parr RG, Pearson RG, J. Am. Chem. Soc., 105, 7512 (1983)
Pearson RG, J. Org. Chem., 27, 734 (1988)
Gupta K, Yasa SR, Khan A, Sharma OP, Khatri OP, J. Colloid Interface Sci., 607, 1973 (2022)
Kuang Y, Zhang ZY, Wu DY, Sci. Total Environ., 806, 151258 (2022)
Xiong SY, Wu ZJ, Li ZL, Chemosphere, 287, 132418 (2022)
Joshi P, Sharma OP, Ganguly SK, Srivastava M, Khatri OP, J. Colloid Interface Sci., 608, 2870 (2022)
Singh S, Anil AG, Khasnabis S, Kumar V, Nath B, Adiga V, Naik TSSK, Subramanian S, Kumar V, Singh J, Ramamurthy PC, Environ. Res., 203, 111891 (2022)
Ammendola P, Raganati F, Chirone R, Chem. Eng. J., 322, 302313 (2017)
Fan S, Wang Y, Wang Z, Tang J, Tang J, Li XD, J. Environ. Chem. Eng., 51, 601611 (2017)
Saleh TA, Sa A, Tuzen M, Chem. Eng. J., 307, 230238 (2017)
Badawi MA, Negm NA, Kana MTHA, Hefni HH, Moneem MMA, Int. J. Biol. Macromol., 99, 465476 (2017)
Zheng YQ, Cheng B, You W, Yu JG, Ho W, J. Hazard. Mater., 369, 214225 (2019)
Zhang YF, Wu L, Deng HL, Qiao N, Zhang DS, Lin H, Chen YY, J. Environ. Chem. Eng., 9, 106008 (2021)
Anuma S, Mishra P, Bhat BR, J. Hazard. Mater., 416, 125929 (2021)
Hao X, Yang S, Li Y, J. Hazard. Mater., 424, 127680 (2022)
Yan JH, Li KR, Sep. Purif. Technol., 277, 119469 (2021)
Luo JQ, Fan CJ, Zhou XD, J. Appl. Polym. Sci., 138, 50065 (2021)
Cao ML, Li Y, Yin H, Shen S, Ecotox. Environ. Safe., 173, 2836 (2019)
White RL, White CM, Turgut H, Massoud A, Tian ZR, J. Taiwan Inst. Chem. Eng., 85, 1828 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로