ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 19, 2022
Accepted August 17, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Downstream process development of biobutanol using deep eutectic solvent

Dept. of Chem. & Energy Eng., Kyungnam Coll. of Info. & Tech., Busan 47011, Korea 1Dept. of Industrial Chemistry, Pukyong National University, Busan 48547, Korea
Korean Journal of Chemical Engineering, January 2023, 40(1), 205-214(10), 10.1007/s11814-022-1265-2
downloadDownload PDF

Abstract

Biobutanol is produced from lignocellulose fermentation. Owing to the abundance of this feedstock and the similarities between the properties of biobutanol and gasoline, biobutanol represents a promising alternative to current crude-oil-based automotive fuel. Environmentally friendly recovery of biobutanol from the fermentation products is essential for achieving carbon-neutral production. Because extraction substantially lowers the energy demand for distillation, an eco-friendly deep eutectic solvent (DES) was applied for biobutanol extraction here, and the non-random two-liquid (NRTL) parameters that were compatible with the process design program were derived using experimental measurements and molecular simulations. For the liquid-liquid equilibrium (LLE) parameter estimation, a non-iterative procedure was introduced with a suitable arrangement of binary parameters for the DES. Compared to previous studies, the process design results indicate a marked reduction in energy consumption for the near-complete recovery of high-purity biobutanol, requiring a comparable investment.

References

Kushwaha D, Srivastava N, Mishra I, Upadhyay SN, Mishra PK, Rev. Chem. Eng., 35, 475 (2019)
Fomo G, Madzimbamuto TN, Ojumu TV, Sustainability, 12, 5244 (2020)
Baritugo KA, Son JN, Sohn YJ, Kim HT, Joo JC, Choi JI, Park SJ, Korean J. Chem. Eng., 38, 1291 (2021)
D'Alessandro EB, Soares AT, Lopes RG, Derner RB, Antoniosi NR, Chem. Eng. Commun., 208, 965 (2021)
Kang S, Realff MJ, Yuan YH, Chance R, Lee JH, Korean J. Chem. Eng., 39, 1524 (2022)
Verma R, Banerjee T, Glob. Chall., 3, 1900024 (2019)
Verma R, Naik PK, Diaz I, Banerjee T, Fluid Phase Equilib., 533, 112949 (2021)
Peng Y, Lu X, Liu B, Zhu J, Fluid Phase Equilib., 448, 128 (2017)
Souza GAL, Silva LYA, Martinez PFM, J. Chem. Thermodyn., 158, 106444 (2021)
Amiri H, Karimi K, Bioresour. Technol., 270, 702 (2018)
Menchavez RN, Ha SH, Korean J. Chem. Eng., 36, 909 (2019)
Amiri H, Karimi K, Zilouei H, Bioresour. Technol., 152, 450 (2014)
Calhan A, Deniz S, Romero J, Hasanoglu A, Korean J. Chem. Eng., 36, 1489 (2019)
Ibarra-Gonzalez P, Christensen LP, Rong BG, Chem. Eng. Commun., 209, 529 (2021)
Bharathiraja B, Jayamuthunagai J, Sudharsanaa T, Bharghavi A, Praveenkumar R, Chakravarthy M, Yuvaraj D, Renew. Sust. Energ. Rev., 68, 788 (2017)
Oh HW, Lee SC, Woo HC, Kim YH, Chem. Eng. Technol., 44, 2316 (2021)
Paduszyński K, Więckowski M, Okuniewski M, Domańska U, J. Mol. Liq., 286, 110819 (2019)
Arce PF, Guimaraes DHP, de Aguirre LR, Chem. Eng. Commun., 206, 1273 (2021)
Renon H, Prausnitz JM, AIChE J., 14, 135 (1968)
Jha D, Haider MB, Kumar R, Balathanigaimani MS, Chem. Eng. Res. Des., 111, 218 (2016)
Wu LH, Wu L, Liu YS, Guo XQ, Hu YF, Cao R, Pu XY, Wang X, Chem. Eng. Res. Des., 129, 197 (2018)
Woo HC, Kim YH, AIChE J., 65, e16665 (2019)
Shang X, Ma S, Pan Q, Li J, Sun Y, Ji K, Sun L, Chem. Eng. Res. Des., 148, 298 (2019)
Saravi SH, Ravichandran A, Khare R, Chen CC, AIChE J., 65, 1315 (2019)
Tanveer S, Chen CC, AIChE J., 66 (2020)
Mirza NR, Nicholas NJ, Wu Y, Kentish S, Stevens GW, J. Chem. Eng. Data, 60, 1844 (2015)
Dongmin H, Yanhong C, Chem. Eng. Process., 131, 203 (2018)
Shu G, Tan Y, Cui L, Zhang Y, Zhang L, J. Chem. Eng. Data, 65, 3029 (2020)
Michelsen ML, Fluid Phase Equilib., 9, 21 (1982)
Marcilla A, Reyes-Labarta JA, Olaya MM, Fluid Phase Equilib., 433, 243 (2017)
Li Z, Mumford KA, Smith KH, Chen J, Wang Y, Stevens GW, Ind. Eng. Chem. Res., 55, 2852 (2016)
Denes F, Lang P, Lang-Lazi M, IChemE Symposium Series. Inst. Chem. Eng., London., 152, 877 (2006)
Dubbeldam D, Calero S, Ellis DE, Snurr RQ, (accessed on April 15, 2022).
Dubbeldam D, Calero S, Ellis DE, Snurr RQ, Mol. Simul., 42, 81 (2016)
Seo CH, Kim YH, Sep. Purif. Technol., 209, 1 (2019)
Lee SC, Woo HC, Kim YH, Chem. Eng. Process., 160, 108286 (2021)
Lee SC, Woo HC, Kim YH, Fuel, 310, 122393 (2022)
Rodríguez NR, González ASB, Tijssen PMA, Kroon MC, Fluid Phase Equilib., 385, 72 (2015)
Patrascu I, Bildea CS, Kiss AA, Sep. Purif. Technol., 177, 49 (2017)
Aspentech, Aspen Technology, Inc., Bedford. MA (2015).
Douglas JM, Conceptual design of chemical processes, McGraw-Hill, New York (1988).
Kemp IC, Pinch analysis and process integration, 2nd ed., Butterworth-Heinemann, Burlington, MA (2007).
Turton R, Baille RC, Whiting WB, Shaeiwitz JA, Analysis, synthesis, Upper Saddle River, New Jersey (2003).
Olujic Z, Sun L, de Rijke A, Jansens PJ, Energy, 31, 3083 (2006)
Kim YH, Energy, 70, 435 (2014)
Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, National Renewable Energy Laboratory, Golden, CO (2002).
Yan Q, Ma G, Wang W, J. Phys.-Conf. Ser., 2076, 012037 (2021)
Sandvik, Sandvik AB, Sandviken, Sweden, (2022).
Ayaz H, Chinnasamy V, Cho H, Materials, 14, 7418 (2021)
Aneke M, Gorgens J, Fuel, 150, 583 (2015)
Contreras-Vargas CA, Gomez-Castro FI, Sanchez-Ramirez E, Segovia-Hernandez JG, Morales-Rodriguez R, Gamino-Arroyo Z, Chem. Eng. Technol., 42, 1088 (2019)
Kraemer K, Harwardt A, Bronneberg R, Marquardt W, Comput. Chem. Eng., 35, 949 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로