Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 30, 2022
Accepted September 4, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Acid-doped polyaniline membranes for solar-driven interfacial evaporation
1Department of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R.China 2Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, 2055 Yanan Street, Changchun 130012, P. R.China 3Department of Chemical Engineering,, Benxi Chemical Industry School, 206 Fengye Road, Xihu District, Benxi, Liaoning Province, 110000, P. R. China
lbingbing2002@163.com
Korean Journal of Chemical Engineering, January 2023, 40(1), 223-234(12), 10.1007/s11814-022-1283-0
Download PDF
Abstract
Interface solar desalination technology is an important green and sustainable strategy to solve the freshwater crisis. Herein, polyaniline (PANI) membranes were prepared by immersion precipitation phase inversion (NIPs) method and using for solar-driven water evaporation. To improve the light absorption rate of the PANI membrane, acid doping modification was carried out to the membrane. The results show that the polyaniline-p-toluene sulfonic acid (PANI-PTSA) membrane modified by p-toluene sulfonic acid (PTSA) has microporous structure, and the hydrophilicity was greatly improved after modification. The water evaporation rate and solar energy conversion efficiency of PANI-PTSA membrane were 1.38 kg/(m2h) and 80.7% under 1 kW/m2 sunlight irradiation, respectively, significantly improved compared to the original membrane. Due to the electrostatic repulsion effect of PANI-PTSA on anion charged SO3-, Na+ is separated from Cl-, which reduces the salt crystallization in the evaporator, indicating that PANIPTSA membrane has certain salt resistance in solar desalination experiments. This work provides a simple method to prepare the PANI-PTSA membrane with high efficiency and salt resistance that has huge potential for practical application of interface solar desalination technology.
References
Yang Y, Shao Z, Nanotechnology, 33, 185403 (2022)
Khawaji AD, Wie JM, Desalination, 98, 135 (1994)
Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y, Nat. Nanotechnol., 11, 626 (2016)
Xuan X, Xu B, Sinton D, Li D, Lab Chip, 4, 230 (2004)
Wang C, Wang L, Liang W, Liu F, Li A, J. Colloid Interface Sci., 605, 60 (2021)
Cao J, Fu W, Yang H, Yu Q, Zhang Y, Wang S, Zhao H, Sui Y, Zhou X, Zhao W, Leng Y, Zhao H, Chen H, Qi X, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 175, 56 (2010)
Ye E, Jl A, Hl B, Eyl A, Dong Y, Ysj A, Jhh A, Sang H, Chemosphere, 291, 133013 (2022)
Miao X, Liu S, Wang M, Ge B, Zhu CQ, Sci. China Technological Sci., 64, 2292 (2021)
Lalisse A, Tessier G, Plain J, Baffou G, Sci. Rep., 6, 38647 (2016)
Elimelech M, Phillip WA, Science, 333, 712 (2011)
Song Z, Zhi W, Wang J, Yang S, Wang S, J. Membr. Sci., 376, 83 (2011)
Wang L, Geng B, Appl. Mech. Mater., 633-634, 302 (2014)
Zhang Z, Wang GH, Gu W, Zhao Y, Ji G, J. Colloid Interface Sci., 605, 193 (2022)
Bao L, Liu X, IOP Conf. Ser. Mater. Sci. Eng., 772, 012048 (2020)
Guo B, Zhao J, Wu C, Zheng Y, Ye C, Huang M, Wang S, Colloids Surf. B: Biointerfaces, 177, 346 (2019)
Sun L, Liu J, Zhao Y, Xu J, Li Y, Carbon, 145, 352 (2019)
Yu S, Shi J, Contemp. Chem. Ind., 40, 66 (2011)
Xu L, Shahid S, Holda AK, Emanuelsson E, Patterson DA, J. Membr. Sci., 552, 153 (2018)
Alesary HF, Ismail HK, Mohammed MQ, Mohammed HN, Abbas ZK, Barton S, Chem. Papers, 75, 5087 (2021)
Li JJ, Tang XF, Li H, Yan YG, Zhang QJ, Synth. Met., 160, 11 (2010)
Noskov Y, Ogurtsov N, Bliznyuk V, Lvov Y, Myronyuk I, Pud A, Appl. Nanosci., 12, 1285 (2022)
Zhao S, Wang Z, Wang J, Yang S, Wang S, J. Membr. Sci., 376, 83 (2011)
Xia L, Materials, 14, 2629 (2021)
Laridjani M, Pouget JP, Scherr EM, Macdiarmid AG, Jozefowicz ME, Epstein AJ, Macromolecules, 25, 87 (1992)
Zhou S, Zhang H, Zhao Q, Wang X, Li J, Wang F, Carbon, 52, 440 (2013)
Gui D, Liu C, Chen F, Liu J, Appl. Surf. Sci., 307, 172 (2014)
Li Y, Zhao X, Xu Q, Zhang Q, Chen D, Electrochim. Acta, 27, 6458 (2011)
Du XS, Xiao M, Meng YZ, J. Polym. Sci. B: Polym. Phys., 42, 1972 (2010)
Wang N, Cheng K, Wu H, Wang F, Chin. J. Mater. Res., 27, 432 (2013)
Jafarzadeh S, Claesson PM, Sundell PE, Pan J, Thormann E, ACS Appl. Mater., 6, 19168 (2014)
Ul SJP, Gupta BK, Chandra P, Polym. Bull., 1, 17 (2020)
Khuspe GD, Chougule MA, Navale ST, Pawar SA, Patil VB, Ceram. Int., 40, 3 (2014)
Abdiryim T, Gang ZX, Jamal R, Mater. Chem. Phys., 90, 367 (2005)
Feng Q, Zhang H, Shi Y, Yu X, Lan G, Polymer, 13, 1360 (2021)
Abutalib M, Rajeh A, J. Mater. Sci., 31, 9430 (2020)
Ansari MO, Khan MM, Ansari SA, Amal I, Lee J, Cho MH, Mater. Lett., 114, 159 (2014)
Liu SD, Ren YK, Zhou Z, Chen WC, Li ZQ, Guo FL, Mo LE, Wu JH, Hu LH, Dai SY, J. Power Sources, 329, 225 (2016)
Khawaji AD, Wie JM, Desalination, 98, 135 (1994)
Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y, Nat. Nanotechnol., 11, 626 (2016)
Xuan X, Xu B, Sinton D, Li D, Lab Chip, 4, 230 (2004)
Wang C, Wang L, Liang W, Liu F, Li A, J. Colloid Interface Sci., 605, 60 (2021)
Cao J, Fu W, Yang H, Yu Q, Zhang Y, Wang S, Zhao H, Sui Y, Zhou X, Zhao W, Leng Y, Zhao H, Chen H, Qi X, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 175, 56 (2010)
Ye E, Jl A, Hl B, Eyl A, Dong Y, Ysj A, Jhh A, Sang H, Chemosphere, 291, 133013 (2022)
Miao X, Liu S, Wang M, Ge B, Zhu CQ, Sci. China Technological Sci., 64, 2292 (2021)
Lalisse A, Tessier G, Plain J, Baffou G, Sci. Rep., 6, 38647 (2016)
Elimelech M, Phillip WA, Science, 333, 712 (2011)
Song Z, Zhi W, Wang J, Yang S, Wang S, J. Membr. Sci., 376, 83 (2011)
Wang L, Geng B, Appl. Mech. Mater., 633-634, 302 (2014)
Zhang Z, Wang GH, Gu W, Zhao Y, Ji G, J. Colloid Interface Sci., 605, 193 (2022)
Bao L, Liu X, IOP Conf. Ser. Mater. Sci. Eng., 772, 012048 (2020)
Guo B, Zhao J, Wu C, Zheng Y, Ye C, Huang M, Wang S, Colloids Surf. B: Biointerfaces, 177, 346 (2019)
Sun L, Liu J, Zhao Y, Xu J, Li Y, Carbon, 145, 352 (2019)
Yu S, Shi J, Contemp. Chem. Ind., 40, 66 (2011)
Xu L, Shahid S, Holda AK, Emanuelsson E, Patterson DA, J. Membr. Sci., 552, 153 (2018)
Alesary HF, Ismail HK, Mohammed MQ, Mohammed HN, Abbas ZK, Barton S, Chem. Papers, 75, 5087 (2021)
Li JJ, Tang XF, Li H, Yan YG, Zhang QJ, Synth. Met., 160, 11 (2010)
Noskov Y, Ogurtsov N, Bliznyuk V, Lvov Y, Myronyuk I, Pud A, Appl. Nanosci., 12, 1285 (2022)
Zhao S, Wang Z, Wang J, Yang S, Wang S, J. Membr. Sci., 376, 83 (2011)
Xia L, Materials, 14, 2629 (2021)
Laridjani M, Pouget JP, Scherr EM, Macdiarmid AG, Jozefowicz ME, Epstein AJ, Macromolecules, 25, 87 (1992)
Zhou S, Zhang H, Zhao Q, Wang X, Li J, Wang F, Carbon, 52, 440 (2013)
Gui D, Liu C, Chen F, Liu J, Appl. Surf. Sci., 307, 172 (2014)
Li Y, Zhao X, Xu Q, Zhang Q, Chen D, Electrochim. Acta, 27, 6458 (2011)
Du XS, Xiao M, Meng YZ, J. Polym. Sci. B: Polym. Phys., 42, 1972 (2010)
Wang N, Cheng K, Wu H, Wang F, Chin. J. Mater. Res., 27, 432 (2013)
Jafarzadeh S, Claesson PM, Sundell PE, Pan J, Thormann E, ACS Appl. Mater., 6, 19168 (2014)
Ul SJP, Gupta BK, Chandra P, Polym. Bull., 1, 17 (2020)
Khuspe GD, Chougule MA, Navale ST, Pawar SA, Patil VB, Ceram. Int., 40, 3 (2014)
Abdiryim T, Gang ZX, Jamal R, Mater. Chem. Phys., 90, 367 (2005)
Feng Q, Zhang H, Shi Y, Yu X, Lan G, Polymer, 13, 1360 (2021)
Abutalib M, Rajeh A, J. Mater. Sci., 31, 9430 (2020)
Ansari MO, Khan MM, Ansari SA, Amal I, Lee J, Cho MH, Mater. Lett., 114, 159 (2014)
Liu SD, Ren YK, Zhou Z, Chen WC, Li ZQ, Guo FL, Mo LE, Wu JH, Hu LH, Dai SY, J. Power Sources, 329, 225 (2016)