Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 20, 2022
Accepted June 19, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Minimum elutriation velocity of the binary solid mixture - Empirical correlation and genetic algorithm (GA) modeling
1Department of Chemical Engineering, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, India 2Present address: St. James’ School, 165, A. J. C. Bose Road, Kolkata - 700 014, West Bengal, India
drsudipkdas@gmail.com, skdchemengg@caluniv.ac.in
Korean Journal of Chemical Engineering, January 2023, 40(1), 248-254(7), 10.1007/s11814-022-1212-2
Download PDF
Abstract
The solid-water fluidized bed was investigated with a binary mixture of irregularly shaped sand particles. A binary mixture was produced by mixing particles of sand for different weight ratios. The influence of various operating parameters on minimum elutriation velocity was investigated. It was observed that the Ume decreases with the increase of the lighter particles in the binary mixture, and the Ume increases with the increase of column diameter. A simplified empirical correlation has been developed to predict minimum elutriation velocity with acceptable statistical parameters. Application concerning a hybrid of artificial neural network (ANN), and genetic algorithm (GA), is successfully predicted.
References
Miyahara T, Tsuchiya K, Fan LS, AIChE J., 35, 1195 (1989)
Choi JH, Suh JM, Chang IY, Shun DW, Yi CK, Son JE, Kim SD, Powder Technol., 121, 190 (2001)
Li J, Yamashita A, Kato K, J. Chem. Eng. Jpn., 33, 730 (2000)
Santana D, Rodríguez JM, Macías-Machín A, Powder Technol., 106, 110 (1999)
Smolders K, Baeyens J, Powder Technol., 92, 35 (1997)
Monazam ER, Breault RW, Weber J, Layfield K, Powder Technol., 305, 340 (2017)
Colakyan M, Levenspiel O, Powder Technol., 38, 223 (1984)
Kato K, Kanbara S, Tajima T, Shibasaki H, Ozawa K, Takarada T, J. Chem. Eng. Jpn., 20, 498 (1987)
Rodríguez JM, Sánchez JR, Alvaro A, Florea DF, Estévez AM, Powder Technol., 111, 218 (2000)
Misra P, Sawarkar SK, Ganguly UP, Int. J. Miner. Process., 32, 311 (1991)
Maiti SB, Bar N, Das SK, Adv. Powder Technol., 30, 2940 (2019)
Ganguly UP, Can. J. Chem. Eng., 60, 466 (1982)
Ganguly UP, Can. J. Chem. Eng., 60, 470 (1982)
Ganguly UP, Can. J. Chem. Eng., 67, 162 (1989)
Stojkovski V, Kostić Z, Therm. Sci., 7, 43 (2003)
Ma X, Honda Y, Nakagawa N, Kato K, J. Chem. Eng. Jpn., 29, 330 (1996)
Let S, Bar N, Basu RK, Das SK, Chem. Eng. Technol., 45, 73 (2022)
Ghosh I, Kar S, Chatterjee T, Bar N, Das SK, Sustain. Chem. Pharm., 19, 100374 (2021)
Ghosh K, Bar N, Biswas AB, Das SK, Can. J. Chem. Eng., 97, 2883 (2019)
Ghosh K, Bar N, Biswas AB, Das SK, Sustain. Chem. Pharm., 19, 100370 (2021)
Nag S, Bar N, Das SK, Chem. Eng. Sci., 226, 115904 (2020)
Nag S, Mondal A, Roy DN, Bar N, Das SK, Environ. Technol. Innov., 11, 83 (2018)
Nag S, Bar N, Das SK, Environ. Technol. Innov., 13, 130 (2019)
Let S, Bar N, Basu RK, Das SK, Part. Sci. Technol., Online (2022).
Wen CY, Chen LH, AIChE J., 28, 117 (1982)
Guha SK, Kumar A, Gupta PS, Can. J. Chem. Eng., 50, 602 (1972)
Geldart D, Baeyens J, Pope DJ, Van De Wijer P, Powder Technol., 30, 195 (1981)
Maiti SB, Let S, Bar N, Das SK, Chem. Eng. Sci., 176, 233 (2018)
Colakyan M, Catipovic N, Jovanovic G, Fitzgerald F, AIChE Symp. Ser., 77, 66 (1981)
Choi JH, Choi KB, Kim P, Shun DW, Kim SD, Powder Technol., 92, 127 (1997)
Choi JH, Suh JM, Chang IY, Shun DW, Yi CK, Son JE, Kim SD, Powder Technol., 121, 190 (2001)
Li J, Yamashita A, Kato K, J. Chem. Eng. Jpn., 33, 730 (2000)
Santana D, Rodríguez JM, Macías-Machín A, Powder Technol., 106, 110 (1999)
Smolders K, Baeyens J, Powder Technol., 92, 35 (1997)
Monazam ER, Breault RW, Weber J, Layfield K, Powder Technol., 305, 340 (2017)
Colakyan M, Levenspiel O, Powder Technol., 38, 223 (1984)
Kato K, Kanbara S, Tajima T, Shibasaki H, Ozawa K, Takarada T, J. Chem. Eng. Jpn., 20, 498 (1987)
Rodríguez JM, Sánchez JR, Alvaro A, Florea DF, Estévez AM, Powder Technol., 111, 218 (2000)
Misra P, Sawarkar SK, Ganguly UP, Int. J. Miner. Process., 32, 311 (1991)
Maiti SB, Bar N, Das SK, Adv. Powder Technol., 30, 2940 (2019)
Ganguly UP, Can. J. Chem. Eng., 60, 466 (1982)
Ganguly UP, Can. J. Chem. Eng., 60, 470 (1982)
Ganguly UP, Can. J. Chem. Eng., 67, 162 (1989)
Stojkovski V, Kostić Z, Therm. Sci., 7, 43 (2003)
Ma X, Honda Y, Nakagawa N, Kato K, J. Chem. Eng. Jpn., 29, 330 (1996)
Let S, Bar N, Basu RK, Das SK, Chem. Eng. Technol., 45, 73 (2022)
Ghosh I, Kar S, Chatterjee T, Bar N, Das SK, Sustain. Chem. Pharm., 19, 100374 (2021)
Ghosh K, Bar N, Biswas AB, Das SK, Can. J. Chem. Eng., 97, 2883 (2019)
Ghosh K, Bar N, Biswas AB, Das SK, Sustain. Chem. Pharm., 19, 100370 (2021)
Nag S, Bar N, Das SK, Chem. Eng. Sci., 226, 115904 (2020)
Nag S, Mondal A, Roy DN, Bar N, Das SK, Environ. Technol. Innov., 11, 83 (2018)
Nag S, Bar N, Das SK, Environ. Technol. Innov., 13, 130 (2019)
Let S, Bar N, Basu RK, Das SK, Part. Sci. Technol., Online (2022).
Wen CY, Chen LH, AIChE J., 28, 117 (1982)
Guha SK, Kumar A, Gupta PS, Can. J. Chem. Eng., 50, 602 (1972)
Geldart D, Baeyens J, Pope DJ, Van De Wijer P, Powder Technol., 30, 195 (1981)
Maiti SB, Let S, Bar N, Das SK, Chem. Eng. Sci., 176, 233 (2018)
Colakyan M, Catipovic N, Jovanovic G, Fitzgerald F, AIChE Symp. Ser., 77, 66 (1981)
Choi JH, Choi KB, Kim P, Shun DW, Kim SD, Powder Technol., 92, 127 (1997)