ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 26, 2022
Accepted August 6, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Modification of activated carbon from agricultural waste lotus leaf and its adsorption mechanism of beryllium

1School of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China 2School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, Hunan, China 3State Key Laboratory of Nuclear Resources and Environment, (East China University of Technology), Nanchang, 330013, Jiangxi, China 4Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC. Tongzhou District, 101149, Beijing, China
670566869@qq.com
Korean Journal of Chemical Engineering, January 2023, 40(1), 255-266(12), 10.1007/s11814-022-1251-8
downloadDownload PDF

Abstract

With the wide application of beryllium globally, industrial wastewater has rapidly increased. Previously, adsorption was effective in treating this issue. However, most adsorbents have a poor removal rate, primarily in the low adsorption capacity. To remove Be from industrial wastewater and overcome the disadvantages of low adsorption capacity and poor removal rate of existing adsorbents, typical agricultural waste lotus leaf was used to prepare Al-activated carbon (Al-AC) by the impregnation-calcination modification of Al(NO3)3. The theoretical maximum adsorption capacity of Al-AC was 32.86mg/g. Langmuir, Freundlich, and Temkin models were used to thermodynamically analyze Al-AC, and adsorption thermodynamics demonstrated that the adsorption reaction of Al-AC was endothermic. Through characterization analysis, the specific surface area of the modified AC increased from 4.3573 to 155.87 m2/g. This study provides a new approach to preparing and modifying AC and a new method for removing Be from industrial wastewater.

References

Xiangyuan T, Lei X, Rucheng W, Rongqing Z, Huan H, Chen L, J. Nanjing University, 56, 815 (2020)
Chengxing L, Engineering study on biological treatment of beryllium- containing wastewater, Central South University (2010).
Tanveer M, Wang L, Plant Physiol., 139, 691 (2019)
Chiarappa-Zucca ML, Finkel RC, Martinelli RE, McAninch JE, Nelson DO, Turteltaub KW, Chem. Res. Toxicol., 17, 1614 (2004)
Vladimír B, Elena V, Karel VS, Environ. Res., 22, 439 (1980)
Minglong Z, Liyuan C, Xiaobo M, Qingzhu L, Shunwen W, Technol. Water Treat., 32, 45 (2006)
Phillip L, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 25, 21 (2008)
Robles, Aller AJ, Quim. Anal., 15, 21 (1995)
Ke J, Kanggen Z, Youcai Y, Nonferrous Metal, 06, 83 (2018)
Xuejun X, Yanhui L, Chinese J. Rare Metals., S1, 59 (2007)
Hewen C, Xiaojia Z, Haiying X, Xiaorong Y, Water Technol., 06, 16 (2011)
Minzhan W, Zhengke Z, Sili C, Sha C, Qingwei G, Jinsong W, Technol. Water Treat., 47, 78 (2021)
Ersin K, Sezgin B, Mehmet Y, Food Addit Contam Part A Chem. Anal. Control Expo. Risk Assess., 28, 455 (2011)
Yongbo D, Lei X, Zhimin Q, Honglan S, Chemosphere, 262, 127940 (2021)
Xianchun L, Huanran W, Gege S, Int. J. Hydrog. Energy, 144, 25265 (2019)
Norouzi S, Heidari M, Alipour V, Dindarloo K, Bioresour. Technol., 258, 48 (2018)
Lütke FS, Igansi VA, Pegoraro L, Tito RS, J. Environ. Chem. Eng., 17, 103396 (2019)
Lin L, Suqin L, Junxin L, J. Hazard. Mater., 192, 683 (2011)
Kuang Y, Xiaoping Z, Shaoqi Z, Water, 12, 587 (2020)
Zulaicha AS, J. Phys. Conf. Ser., 1, 1751 (2021)
Youji L, Jing L, Mingyuan M, Wenbin Y, Sci. China Ser. B., 52, 1113 (2009)
Karthikeyan P, Meenakshi S, J. Mol. Liq. C, 296, 111766 (2019)
Zhijun R, Biao J, Guangming Z, Longyi L, Chemosphere, 262, 127895 (2021)
Al-Saad KA, Amr MA, Hadi DT, Arar RS, AL-Sulaiti MM, Abdulmalik TA, Alsahamary NM, Kwak JC, Arab. J. Nucl. Sci. Appl., 45, 335 (2012)
Kotaro B, Naoki K, Saki S, Hideaki M, Anal. Sci. Technol., 11, 1067 (2014)
Yücel Y, Göycıncık S, Waste Biomass Valori, 6, 1077 (2015)
Iannicelli-zubiani EM, Stampino PG, Cristiani C, Dotelli G, Chem. Eng. J., 341, 75 (2018)
Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL, Almeida VC, Chem. Eng. J., 288, 778 (2016)
Martins AC, Pezoti O, Cazetta AL, Almeida VC, Chem. Eng. J., 288, 291 (2015)
Kumar PS, Ramalingam S, Kirupha SD, Sivanesan S, Chem. Eng. J., 167, 122 (2010)
Oberlintner A, Shvalya V, Vasudevan A, Vengust D, Likozar B, Cvelbar U, Novak U, Appl. Surf. Sci., 581, 152276 (2022)
Thommes M, Pure Appl. Chem., 87, 1051 (2016)
Weifeng L, Jian Z, Chenglu Z, Ye L, Chem. Eng. J., 162, 677 (2010)
Heshan Z, Wanqian G, Shuo L, Jo-shu C, Bioresour. Technol., 244, 1456 (2017)
Watanabe T, Miki Y, Masuda T, Kanai H, Hosokawa S, Wada K, Inoue M, Appl. Catal. A: Gen., 396, 140 (2011)
Depci T, Chem. Eng. J., 181, 467 (2012)
Abdulkadir I, Mohammed BS, Liew MS, Wahab MMA, Case Stud. Constr. Mat., 14, E00525 (2021)
Kaynar SC, Kaynar UH, Nucl. Sci. Tech., 30, 75 (2019)
Fang S, Wei-ling S, Hai-mei S, Jin-ren N, Chem. Eng. J., 172, 783 (2011)
Savenko VS, Russ. J. Inorg. Chem., 52, 465 (1965)
Chenhui Y, Yongqing Z, Meimei D, Xiaodong D, Shaobin H, Chem. Eng. J., 362, 262 (2019)
Peizhen Z, Xiaoxiao Z, Xiangru Y, Ruyue X, Lujia H, Bioresour. Technol., 331, 125013 (2021)
Yaoning C, Meiling L, Yuanping L, Yihuan L, Yanrong C, Hui L, Chen L, Bioresour. Technol., 321, 12443 (2021)
Karaca H, Altıntığ E, Türker D, Teker M, J. Dispersion Sci. Technol., 39, 1800 (2018)
Mashkoor F, Nasar A, Abdullah I, Asiri M, Sci. Rep-uk., 8, 8314 (2018)
Shaban M, Abukhadra MR, Shahien MG, Khan AAP, Environ. Sci. Pollut. Res., 24, 18135 (2017)
Huayi C, Wenyan L, Jinjin W, Yulong Z, Bioresour. Technol., 292, 12198 (2019)
Xin Z, Yaru L, Mengru W, Yao P, Zhenbing H, Mian H, Zhihua C, Bioresour. Technol., 320, 124264 (2021)
Xiaogang Z, Xinyue H, Hao P, Jing W, Sihao L, Bioresour. Technol., 334, 125238 (2021)
Gang R, Yan Y, Zhixin Y, Yaomin D, Xiaoyi L, J. Saf. Environ., 16, 208 (2016)
Abd El-magied MO, Mansour A, Al Ghani Alsayed FA, Abd Eldayem S, J. Dispersion Sci. Technol., 39, 1597 (2018)
Basargin NN, Miroshnichenko OV, Russ. J. Inorg. Chem., 57, 758 (2012)
Petriciolet AB, Castillo DIM, Ávila HER, Adsorption processes for water treatment and purification, Springer, Publications, Berlin (2017).
Hadi M, Samarghandi MR, Mckay G, Chem. Eng. J., 160, 408 (2010)
Singha AS, Guleria A, J. Environ. Chem. Eng., 2, 1456 (2014)
Srivastava S, Agrawal SB, Mondal MK, Korean J. Chem. Eng., 33, 567 (2016)
Mirzaeei S, Pirhayati FH, Mohammadi G, Rahimpour E, Martinez F, Jouyban A, Phys. Chem. Liq., 57, 788 (2019)
Jiayang L, Changwei H, Qingguo H, Bioresour. Technol., 271, 487 (2018)
Yu L, Ya-juan L, Sep. Purif. Technol., 61, 229 (2007)
Barkat M, Nibou D, Chegrouche S, Mellah A, Chem. Eng. Process., 48, 38 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로