ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 13, 2022
Accepted August 10, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Droplet size distribution in a biphasic liquid reactor for understanding the impact of various dual impeller designs on the morphology of S-PVC

Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
jaewlee@kaist.ac.kr
Korean Journal of Chemical Engineering, January 2023, 40(1), 46-56(11), 10.1007/s11814-022-1252-7
downloadDownload PDF

Abstract

This study investigated the effect of dual impeller geometry on the droplet size in the suspension-PVC (SPVC) polymerization process. To simulate the process, 1,2-dichloroethane was used as a dispersed phase, because it has been used to replace the toxic vinyl chloride monomer (VCM). Using a borescope method, a droplet size was measured for a biphasic liquid system, and the Sauter mean diameter increased by 46.5% as the upper paddle impeller was replaced by 20° pitched paddle. It also increased when the impeller diameter and the blade width increased. Considering this effect, a geometrical factor (F) was revised, and a calculated maximum energy dissipation rate was used for establishing the Sauter mean diameter correlation. The proposed correlation can estimate the Sauter mean diameter within ±20% error, and one can predict the normality of the polymerization under specific impeller geometry using this correlation.

References

Lee JR, Hasolli N, Lee KS, Lee KY, Park YO, Korean J. Chem. Eng., 36, 1548 (2019)
Lee JW, Ko YC, Jung YK, Lee KS, Yoon ES, Comput. Chem. Eng., 21, S1105 (1997)
Samdavid S, Renganathan T, Krishnaiah K, Korean J. Chem. Eng., 39, 86 (2022)
Rave K, Hermes M, Wirz D, Hundshagen M, Friebel A, von Harbou E, Bart HJ, Skoda R, Chem. Eng. Sci., 253, 117518 (2022)
Bergbreiter DE, Sung SD, Adv. Synth. Catal., 348, 1352 (2006)
Liu B, Sun N, Jin Z, Zhang Y, Sunden B, Ind. Eng. Chem. Res., 58, 22376 (2019)
Im H, Park J, Lee JW, ACS Omega, 4, 1329 (2019)
Im H, Lee S, Lee JW, Chem. Eng. Res. Des., 136, 654 (2018)
Burgess RH, Manufacture and processing of PVC, CRC Press (1981).
Darvishi R, Esfahany MN, Bagheri R, J. Vinyl Addit. Technol., 22, 470 (2016)
Smallwood PV, Polymer, 27, 1609 (1986)
Guo R, Yu E, Liu J, Wei Z, RSC Adv., 7, 24022 (2017)
Zerfa M, Brooks BW, J. Appl. Polym. Sci., 60, 2077 (1996)
Kobayashi T, Tomishima Y, Yamamoto T, Nojima Y, US Patent, 4,849,482 (1989).
Park J, Lee S, Lee JW, Ind. Eng. Chem. Res., 57, 2310 (2018)
Gäbler A, Wegener M, Paschedag AR, Kraume M, Chem. Eng. Sci., 61, 3018 (2006)
Desnoyer C, Masbernat O, Gourdon C, Chem. Eng. Sci., 58, 1353 (2003)
Choi S, Jung I, Kim H, Na J, Lee JM, Korean J. Chem. Eng., 39, 515 (2022)
Hardy N, Augier F, Nienow AW, Béal C, Chaabane FB, Chem. Eng. Sci., 172, 158 (2017)
Gu D, Liu Z, Xu C, Li J, Tao C, Wang Y, Chem. Eng. Process., 118, 37 (2017)
Mishra V, Joshi J, Chem. Eng. Res. Des., 72, 657 (1994)
Borwankar RP, Chung SI, Wasan DT, J. Appl. Polym. Sci., 32, 5749 (1986)
Pacek AW, Chamsart S, Nienow AW, Bakker A, Chem. Eng. Sci., 54, 4211 (1999)
Calabrese RV, Chang TPK, Dang PT, AIChE J., 32, 657 (1986)
Mlynek Y, Resnick W, AIChE J., 18, 122 (1972)
Laso M, Steiner L, Hartland S, Chem. Eng. Sci., 42, 2437 (1987)
Ruiz MC, Lermanda P, Padilla R, Hydrometallurgy, 63, 65 (2002)
De Hert SC, Rodgers TL, AIChE J., 64, 3293 (2018)
Ritter J, Kraume M, Chem. Eng. Technol., 23, 579 (2000)
Lee S, Varma A, AIChE J., 61, 2228 (2015)
Brown DE, Pitt K, Chem. Eng. Sci., 29, 345 (1974)
Quadros PA, Baptista CMSG, Chem. Eng. Sci., 58, 3935 (2003)
Im H, Park J, Lee JW, Korean J. Chem. Eng., 36, 1680 (2019)
Ghotli RA, Abbasi MR, Bagheri AH, Raman AAA, Ibrahim S, Bostanci H, J. Taiwan Inst. Chem. Eng., 100, 26 (2019)
Bliatsiou C, Malik A, Böhm L, Kraume M, Ind. Eng. Chem. Res., 58, 2537 (2019)
Park J, Ahan W, Lee JW, Korean J. Chem. Eng., 38, 1348 (2021)
Rumble JR, Lide DR, Bruno TJ, CRC handbook of chemistry and physics, CRC Press, Florida (2017).
Vargaftik NB, Volkov BN, Voljak LD, J. Phys. Chem. Ref Data, 12, 817 (1983)
Laliberté M, J. Chem. Eng. Data, 52, 321 (2007)
Girault HHJ, Schiffrin DJ, Smith BDV, J. Colloid Interface Sci., 101, 257 (1984)
Zeynali V, Sargolzaei J, Moghaddam AH, Desalin. Water Treat., 56, 24240 (2016)
Sargolzaei J, Moghaddam AH, Shayegan J, Korean J. Chem. Eng., 28, 1889 (2011)
Masoudi SMA, Moghaddam AH, Sargolzaei J, Darroudi A, Zeynali V, Environ. Prog. Sustain. Energy, 37, 1638 (2018)
Coulaloglou CA, Tavlarides LL, AIChE J., 22, 289 (1976)
Chatzi EG, Boutris CJ, Kiparissides C, Ind. Eng. Chem. Res., 30, 1307 (1991)
Henzler HJ, Biedermann A, Chemie Ing. Tech., 68, 1546 (1996)
Jüsten P, Paul GC, Nienow AW, Thomas CR, Biotechnol. Bioeng., 52, 672 (1996)
Smith JJ, Lilly MD, Fox RI, Biotechnol. Bioeng., 35, 1011 (1990)
Paul EL, Atiemo-Obeng VA, Kresta SM, Handbook of industrial mixing: Science and practice, John Wiley & Sons (2003).
Lovick J, Mouza AA, Paras SV, Lye GJ, Angeli P, J. Chem. Technol. Biotechnol., 80, 545 (2005)
Hudcova V, Machon V, Nienow AW, Biotechnol. Bioeng., 34, 617 (1989)
Cutter LA, AIChE J., 12, 35 (1966)
Wu H, Patterson GK, Chem. Eng. Sci., 44, 2207 (1989)
Sheng J, Meng H, Fox RO, Chem. Eng. Sci., 55, 4423 (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로