ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 11, 2022
Accepted November 6, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A deep learning approach using temporal-spatial data of computational fluid dynamics for fast property prediction of gas-solid fluidized bed

1State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China 2School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
lguo@ipe.ac.cn
Korean Journal of Chemical Engineering, January 2023, 40(1), 57-66(10), 10.1007/s11814-022-1340-8
downloadDownload PDF

Abstract

To deal with the critical issue of long computational time in practical application of computational fluid dynamics (CFD), this paper presents a new approach of deep learning for voidage prediction (DeepVP) that couples short time CFD simulations (limited CFD iterations) with the deep learning method to accelerate the 2D voidage distribution prediction for a gas-solid fluidized bed at steady state. Short time CFD simulations are first performed to obtain a sequence of voidage distribution images containing the temporal-spatial property of a gas-solid fluidized bed of the early period. A deep learning model is built to predict the voidage distribution at steady state, which is achieved by implementing multi-scale convolutional neural networks based on the sequence of voidage images. The case study results for a bubbling bed show that the voidage distribution at steady state for the bubbling bed can be predicted with comparable accuracy of conventional CFD simulations at about 1/30th computational cost. Moreover, the DeepVP method exhibits better extrapolation capability than the deep learning approach merely based on CFD condition parameters.

References

Fotovat F, Bi XT, Grace JR, Chem. Eng. Sci., 173, 303 (2017)
Sun J, Yan Y, Meas. Sci. Technol., 27, 112001 (2016)
Zhu G, Zhang B, Zhao P, Duan C, Zhao Y, Zhang Z, Yan G, Zhu X, Ding W, Rao Z, Fuel, 252, 666 (2019)
Taghipour F, Ellis N, Wong C, Chem. Eng. Sci., 60, 6857 (2005)
Wu H, Liu X, An W, Chen S, Lyu H, Comput. Fluids, 198, 104393 (2020)
Liang L, Mao W, Sun W, J. Biomech. Eng. -Trans. ASME, 99, 109544 (2020)
Oberkampf WL, Trucano TG, Prog. Aerosp. Sci., 38, 209 (2002)
Obiols-Sales O, Vishnu A, Malaya N, Chandramowliswharan A, in Proceedings of the 34th ACM International Conference on Supercomputing, 1 (2020).
Kafui K, Thornton C, Adams M, Chem. Eng. Sci., 57, 2395 (2002)
Marion M, Temam R, Handbook of Numerical Analysis, 6, 503 (1998)
Zhao Y, Tang L, Luo Z, Liang C, Xing H, Wu W, Duan C, Fuel Process. Technol., 91, 1819 (2010)
He K, Zhang X, Ren S, Sun J, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770 (2016).
Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E, Comput. Intel. Neurosc., 2018, 7068349 (2018)
Young T, Hazarika D, Poria S, Cambria E, IEEE Comput. Intell. Mag, 13, 55 (2018)
Chowdhary K, Fundamentals of Artificial Intelligence, 603 (2020)
Choi S, Jung I, Kim H, Na J, Lee JM, Korean J. Chem. Eng., 39, 515 (2022)
Na J, Jeon K, Lee WB, Chem. Eng. Sci., 181, 68 (2018)
Kim H, Park M, Kim CW, Shin D, Comput. Chem. Eng., 125, 476 (2019)
Li J, Li Q, Hao H, Li L, Process Saf. Environ. Protect., 149, 711 (2021)
Masoumi AP, Tajalli-Ardekani E, Golneshan AA, Sol. Energy, 207, 703 (2020)
Bakhtiari M, Ghassemi H, Appl. Ocean Res., 94, 101981 (2020)
Bazai H, Kargar E, Mehrabi M, Chem. Eng. Sci., 246, 116886 (2021)
An J, Wang H, Liu B, Luo KH, Qin F, He GQ, Int. J. Hydrog. Energy, 45, 17992 (2020)
LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD, Neural. Comput., 1, 541 (1989)
Salmi T, Kiljander J, Pakkala D, Energies, 13, 2370 (2020)
Mathieu M, Couprie C, Lecun Y, in ICLR (2016).
Aigner S, Körner M, arXiv preprint arXiv:1810.01325 (2018).
Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas DN, in Proceedings of the IEEE International Conference on Computer Vision, 5907 (2017).
Abadi M, Barham P, Chen J, Chen Z, Davis A, in 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 265 (2016).
Ruder S, arXiv preprint arXiv:1609.04747 (2016).
Kingma DP, Ba J, arXiv preprint arXiv:1412.6980 (2014).
Boyce CM, Holland DJ, Scott SA, Dennis JS, Ind. Eng. Chem. Res., 52, 18085 (2013)
Zhao P, Xu J, Ge W, Wang J, Chem. Eng. J., 389, 124343 (2020)
Hore A, Ziou D, in 2010 20th International Conference on Pattern Recognition, 2366 (2010).
Fey M, Lenssen JE, arXiv preprint arXiv:1903.02428 (2019).
Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA, IEEE Signal Process. Mag., 35, 53 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로