Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 14, 2022
Accepted November 6, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Different modes of bubble migration near a vertical wall in pure water
1Department of Process Equipment and Control Engineering, Hebei University of Technology, Tianjin 300130, China 2National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
Korean Journal of Chemical Engineering, January 2023, 40(1), 67-78(12), 10.1007/s11814-022-1339-1
Download PDF
Abstract
The migration of deformable bubbles with different sizes near a vertical wall in pure water was experimentally studied by the dual-camera orthogonal shadow method. The key factors affecting the migration are discussed. It was found that the effect of size and initial distance on bubble migration is indirect. For bubbles of the same diameter (deq=3.10 mm), the same mode occurs when the initial distance (0.5≤L*≤3.5) is changed. When the initial distance (L*=0.5) is constant, the same mode appears for bubbles of different sizes (2.27mm≤deq≤3.40 mm). Furthermore, different modes are found in the same initial distance (L*=0.5) and size (deq=3.10 mm). In fact, the migration mode is determined by the initial distance, Reynolds number and Weber number. The size and initial distance can influence the frequency of different modes. Considering a variety of factors, four basic migration modes are summarized. New correlations are proposed to predict bubble behavior in different modes near the wall. The kinematic and dynamic parameters of different modes are discussed. It is expected that the results can be helpful to predict the gas-liquid flow near a wall and to improve related heat and mass transfer process.
References
Meehan RO, Donnelly B, Nolan K, Murray DB, Int. J. Heat Mass Transf., 108, 1347 (2017)
Maeng H, Park H, Int. J. Heat Mass Transf., 165, 120590 (2021)
Yin J, Zhang Y, Zhu J, Lv L, Tian L, Int. J. Heat Mass Transf., 17710, 121525 (2021)
Liu L, Yan H, Zhao G, Exp. Therm. Fluid Sci., 62, 109 (2015)
Magnaudet J, Eames I, Annu. Rev. Fluid Mech., 321, 659 (2000)
Tomiyama A, Celata GP, Hosokawa S, Yoshida S, Int. J. Multiph. Flow, 289, 1497 (2002)
Yan X, Zheng K, Jia Y, Miao Z, Wang L, Cao Y, Liu J, Ind. Eng. Chem. Res., 57, 5385 (2018)
Suñol F, González-Cinca R, Int. J. Multiph. Flow, 113, 191 (2019)
Maeng H, Park H, Int. J. Heat Mass Transf., 165, 120590 (2020)
Zhang Y, Dabiri S, Chen K, You Y, Int. J. Heat Fluid Flow, 85, 108649 (2020)
Yuan J, Weng Z, Shan Y, Int. J. Therm. Sci., 1686, 107037 (2021)
Yu Q, Ma X, Wang G, Zhao J, Wang D, Ultrason. Sonochem., 71, 105396 (2020)
Li ZP, Sun LQ, Xiao W, Yao XL, Ocean. Eng., 186, 106066 (2019)
de Vries AWG, University of Twente (2001).
Moctezuma MF, Lima-Ochoterena R, Zenit R, Phys. Fluids, 179, 098106 (2005)
Jeong H, Park H, J. Fluid Mech., 771, 564 (2015)
Lee J, Park H, Int. J. Multiph. Flow, 91, 225 (2017)
Chen Y, Tu C, Yang Q, Wang Y, Bao F, Exp. Therm. Fluid Sci., 120, 110235 (2020)
de Vries AWG, Biesheuvel A, Wijngaarden LV, Int. J. Multiph. Flow, 2811, 1823 (2002)
Takemura F, Magnaudet J, J. Fluid Mech., 495, 235 (2003)
Veldhuis C, University of Twente (2007)
Krishna R, Urseanu MI, Baten JMV, Ellenberger J, Int. Commun. Heat Mass Transf., 266, 781 (1999)
Zaruba A, Lucas D, Prasser HM, Höhne T, Chem. Eng. Sci., 626, 1591 (2007)
Nakayama Y, Introduction to fluid mechanics (Second Edition), Butterworth-Heinemann (2018).
Hayes MH, Schaum’s outline digital signal processing, McGraw-Hill Companies (1999).
Mitra SK, Digital signal processing: A computer-based approach, McGraw-Hill Companies (2005).
Brucker C, Phys. Fluids, 117, 1781 (1999)
Zeng L, Balachandar S, Fischer P, J. Fluid Mech., 536, 1 (2005)
Mougin G, Magnaudet J, Int. J. Multiph. Flow, 2811, 1837 (2002)
Shew WL, Poncet S, Pinton JF, J. Fluid Mech., 569, 51 (2006)
Shew WL, Pinton JF, Phys. Rev. Lett., 9714, 144508 (2006)
Kong G, Mirsandi H, Buist K, Peters E, Baltussen M, Kuipers J, Exp. Fluids, 6010, 155 (2019)
Mougin G, Magnaudet J, Phys. Rev. Lett., 881, 014502 (2002)
Ellingsen K, Risso F, J. Fluid Mech., 440, 235 (2001)
Clift R, Grace JR, Weber ME, Bubbles, drops, and particles, Academic Press (1978).
Figueroa-Espinoza B, Zenit R, Legendre D, J. Fluid Mech., 616, 419 (2008)
Takemura F, Takagi S, Magnaudet J, Matsumoto Y, J. Fluid Mech., 461, 277 (2002)
Maeng H, Park H, Int. J. Heat Mass Transf., 165, 120590 (2021)
Yin J, Zhang Y, Zhu J, Lv L, Tian L, Int. J. Heat Mass Transf., 17710, 121525 (2021)
Liu L, Yan H, Zhao G, Exp. Therm. Fluid Sci., 62, 109 (2015)
Magnaudet J, Eames I, Annu. Rev. Fluid Mech., 321, 659 (2000)
Tomiyama A, Celata GP, Hosokawa S, Yoshida S, Int. J. Multiph. Flow, 289, 1497 (2002)
Yan X, Zheng K, Jia Y, Miao Z, Wang L, Cao Y, Liu J, Ind. Eng. Chem. Res., 57, 5385 (2018)
Suñol F, González-Cinca R, Int. J. Multiph. Flow, 113, 191 (2019)
Maeng H, Park H, Int. J. Heat Mass Transf., 165, 120590 (2020)
Zhang Y, Dabiri S, Chen K, You Y, Int. J. Heat Fluid Flow, 85, 108649 (2020)
Yuan J, Weng Z, Shan Y, Int. J. Therm. Sci., 1686, 107037 (2021)
Yu Q, Ma X, Wang G, Zhao J, Wang D, Ultrason. Sonochem., 71, 105396 (2020)
Li ZP, Sun LQ, Xiao W, Yao XL, Ocean. Eng., 186, 106066 (2019)
de Vries AWG, University of Twente (2001).
Moctezuma MF, Lima-Ochoterena R, Zenit R, Phys. Fluids, 179, 098106 (2005)
Jeong H, Park H, J. Fluid Mech., 771, 564 (2015)
Lee J, Park H, Int. J. Multiph. Flow, 91, 225 (2017)
Chen Y, Tu C, Yang Q, Wang Y, Bao F, Exp. Therm. Fluid Sci., 120, 110235 (2020)
de Vries AWG, Biesheuvel A, Wijngaarden LV, Int. J. Multiph. Flow, 2811, 1823 (2002)
Takemura F, Magnaudet J, J. Fluid Mech., 495, 235 (2003)
Veldhuis C, University of Twente (2007)
Krishna R, Urseanu MI, Baten JMV, Ellenberger J, Int. Commun. Heat Mass Transf., 266, 781 (1999)
Zaruba A, Lucas D, Prasser HM, Höhne T, Chem. Eng. Sci., 626, 1591 (2007)
Nakayama Y, Introduction to fluid mechanics (Second Edition), Butterworth-Heinemann (2018).
Hayes MH, Schaum’s outline digital signal processing, McGraw-Hill Companies (1999).
Mitra SK, Digital signal processing: A computer-based approach, McGraw-Hill Companies (2005).
Brucker C, Phys. Fluids, 117, 1781 (1999)
Zeng L, Balachandar S, Fischer P, J. Fluid Mech., 536, 1 (2005)
Mougin G, Magnaudet J, Int. J. Multiph. Flow, 2811, 1837 (2002)
Shew WL, Poncet S, Pinton JF, J. Fluid Mech., 569, 51 (2006)
Shew WL, Pinton JF, Phys. Rev. Lett., 9714, 144508 (2006)
Kong G, Mirsandi H, Buist K, Peters E, Baltussen M, Kuipers J, Exp. Fluids, 6010, 155 (2019)
Mougin G, Magnaudet J, Phys. Rev. Lett., 881, 014502 (2002)
Ellingsen K, Risso F, J. Fluid Mech., 440, 235 (2001)
Clift R, Grace JR, Weber ME, Bubbles, drops, and particles, Academic Press (1978).
Figueroa-Espinoza B, Zenit R, Legendre D, J. Fluid Mech., 616, 419 (2008)
Takemura F, Takagi S, Magnaudet J, Matsumoto Y, J. Fluid Mech., 461, 277 (2002)